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Abstract—Due to the development of convenient brain—
machine interfaces (BMIs), the automatic selection of a minimum
channel (electrode) set has attracted increasing interest because
the decrease in the number of channels increases the efficiency
of BMIs. This study proposes a deep-learning-based technique to
automatically search for the minimum number of channels appli-
cable to general BMI paradigms using a compact convolutional
neural network for electroencephalography (EEG)-based BMIs.
For verification, three types of BMI paradigms are assessed: 1)
the typical P300 auditory oddball; 2) the new top-down steady-
state visually evoked potential; and 3) the endogenous motor
imagery. We observe that the optimized minimal EEG-channel
sets are automatically selected in all three cases. Their decoding
accuracies using the minimal channels are statistically equiva-
lent to (or even higher than) those based on all channels. The
brain areas of the selected channel set are neurophysiologically
interpretable for all of these cognitive task paradigms. This study
shows that the minimal EEG channel set can be automatically
selected, irrespective of the types of BMI paradigms or EEG input
features using a deep-learning approach, which also contributes
to their portability.

Index Terms—Automation, brain—-machine interface (BMI),
cognitive system, deep learning, electroencephalography (EEG).
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I. INTRODUCTION

RAIN-MACHINE interfaces (BMIs) comprise a promis-
B ing interfacing technology that can be used to directly
control devices by human neural activity (i.e., thought) [1]-[3].
For example, a cognitive BMI can read human intentions from
user electroencephalogram (EEG) signals reflecting higher
order cognitive processes even when the physical behavior of
the user is unknown [4]. EEG-based BMI is the most practical
noninvasive BMI technique [5]; however, several challenges
must be overcome to improve its performance. A key chal-
lenge involves the automatic minimization of the number of
channels (i.e., electrodes placed on the scalp) required for BMI
control. This is also crucial in terms of the portability of BMIs.
Previous studies have attempted to propose channel-selection
algorithms selectively for a specific BMI paradigm [6]-[8].
Furthermore, depending on the type of BMI task that induces
characterized brain signals, the brain reacts differently among
individuals as well as in a single person. Moreover, the number
of optimal EEG channels is subject to change, depending on
the characteristics of BMI paradigms and the individual vari-
ances in brain activity. This further complicates the challenge.
In this regard, the development of a new potent technique to
automatically select an optimally minimal EEG channel set
is required.

Various algorithms for channel selection have been proposed
to improve BMI performance [6], [9], [16]. For example,
a common spatial pattern (CSP)-based EEG channel-selection
algorithm was suggested in a few studies [6], [11], [12]. The
algorithm accounts for the high value of CSP filter coefficients
and selects the optimal channels based on filter weights.
Other studies have employed support vector machine [13],
linear discriminant analysis (LDA) [14], Riemannian dis-
tances between spatial covariance matrices [15], and signal-to-
noise ratios [16] to mitigate the problem. These well-known
machine-learning techniques have typically attempted to iden-
tify minimal channel sets showing the best decoding accura-
cies. However, most of these efforts aimed to select optimal
channels specialized to each particular BMI paradigm [e.g.,
motor imagery (MI) or P300-based speller] [7]. Altogether,
it is required to develop a deep-learning-based automatic
channel-selecting model that is generally applicable to various
repertoires of BMI cognitive paradigms.

To evaluate the contribution of each channel to the decoding
accuracy, regardless of paradigm type, an intelligent machine-
learning model, based on deep learning, is needed [17]-[20].
Deep learning is a specific machine-learning algorithm in
which both features and classifiers are connectedly learned
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Fig. 1. Workflow of the proposed algorithm for minimally selecting chan-
nels for EEG-based BMIs. An automatic minimal-channel searching technique
employs a closed-loop system with decoding performance feedback.

directly from the data. Deep-learning models are capable of
detecting spatial structural features of a given dataset without
the need to handcraft features [21]. Recent advances in deep
learning have provided viable approaches extracting features
automatically through deep layers of hidden units and have
mitigated the drawbacks of conventional machine-learning
limitations [21]. Deep learning has demonstrated the capabil-
ities of detecting necessary features despite unwanted signal
interference [22]. Hence, it has become a favorable technique
for classifying biomedical signals, including EEG data, which
typically contain many artifacts. An advantage of deep learn-
ing in EEG-channel selection is that the robustness and validity
of a selected minimal channel set that corresponds to each
BMI paradigm will be further consolidated, as big data are
progressively collected for each BMI paradigm. As different
EEG features are used during the training of a deep-learning
approach, depending on the type of BMI paradigms, it pro-
vides an implication to identify significant EEG channels for
channel reduction. Consequently, optimized channel sets for
specified BMI tasks (designed for portability) can be deter-
mined. However, it remains unclear whether the deep-learning
approach in EEG-channel selection can be generalizable to
the various BMI tasks as well as to different types of EEG
features.

Generally, the convolutional neural network (CNN) is a very
popular deep-learning approach and is already used in BMI
research [23]. A CNN (also known as, ConvNet) is a feed-
forward network, in which information flows unidirectionally
from the input via the hidden layers to the output [24].
Standard CNN architectures usually stack several convolu-
tion and nonlinearity (+ pooling) layers followed by other
layers, typically fully connected, which serve as classifica-
tion layers [25], [26]. Although CNNs have been generally
employed for image recognition, this is not the case for
electrophysiological signals [27]. Recently, however, there has
been growing attention placed on the implementation of CNNs
for EEG signal processing [28], [29].

Fundamentally, the necessity of big data in deep-learning
approaches is due to the large number of parameters that
have to be learned [30]. Therefore, general CNNs do not
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initially appear to be suitable for a relatively small num-
ber of EEG trials. However, a compact CNN specialized
for the purpose (i.e., EEGNet) has recently been proposed
to overcome the constraints of having access to relatively
small numbers of EEG data [31]. EEGNet is optimized for
a minimal number of learnable parameters for this reason,
and it can be employed to a certain extent when modified
techniques (e.g., data augmentation [32]-[36]) are to be con-
sidered. It performs well across all tested datasets without
the need for data augmentation, making the model simpler
to implement [31]. Furthermore, it is noteworthy that neuro-
physiologically interpretable features instead of artifacts and
noise can be extracted from the EEGNet model [31]. This is
essential to deciding the optimally minimal EEG channels con-
sistent with their neural significance in each specific cognitive
BMI paradigm. Taken together, we employ the compact CNN
of EEGNet among a variety of deep-learning techniques.

We propose a compact CNN-based automatic minimal-
channel searching technique that can be applied to different
types of cognitive BMI paradigms (Fig. 1). As a closed-loop
system enhances the ongoing BMI performance with direct
real-time feedback [4], [37], the present minimal-channel
selection technique employs a closed-loop system with decod-
ing performance feedback. To verify the performance of
this algorithm, three different types of BMI paradigms were
applied: 1) the typical P300 dataset for auditory modality [38];
2) the new six-class top-down steady-state visually evoked
potential (SSVEP) dataset for visual modality [39]; and 3) the
well-known bi-class MI task [40]. To automatically identify
the minimally required channels for each BMI paradigm,
we evaluate whether the decoding accuracy computed using
the minimally selected channels is statistically equivalent to
(or higher than) that computed when using all channels.
Our approach also assesses the minimal channels that are
most probably (greater than 95% confidence interval) selected
across all participants. Additionally, based on the selected min-
imal set of EEG channels, we explore whether the proposed
deep-learning approach can provide the neurophysiologically
interpretable basis for each experimental modality.

II. MATERIALS AND METHODS

For the practical use of BMIs, selecting optimal channels helps
stabilize or improve classification performance, reduce setup
time, and decrease computational complexity [41]. Generally,
a channel-selection algorithm consists of four steps: 1) subset
generation (i.e., acandidate for aminimum channel set); 2) subset
evaluation; 3) stopping criterion; and 4) result validation [7].
Channel subset generation for evaluation is accomplished using
acomplete, sequential, orrandom search. Each candidate channel
subset is then evaluated and compared with the previous best
one until the given stopping criterion is satisfied.

We propose a deep-learning-based minimum-channel-
selection method that is applicable to any BMI paradigm, irre-
spective of the number of channels and the number of decoding
classes. Further technical details are provided in the following
sections. Briefly, the problem statement of the minimum-
channel selection problem is described in Section II-A.
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Section II-B presents the minimum-channel-selection compact
CNN algorithm. Section II-C—F describes the evaluation pro-
cedures of the proposed algorithm using three EEG-based BMI
datasets.

A. Problem Statement

The set of all channels is € = {¢; € RNer|i = 1, ..., N},
where N, is the number of channels is equal to the cardinal-
ity, |C|. Let x; € R” be a single-trial EEG signal recorded
on the ¢; channel, where T is the number of time sam-
ples. Let X; = [xl,xz,...,chh]T e RNexT pe the ith
multichannel EEG trial. Dataset D contains the individual
subject datasets, D1, ...,DNsb/., where D; is the dataset of

the jth subject. EachNdataset consists of Nyia-labeled EEG
epochs, D; = {X/, yﬂ}i:mlal, where y; € {1,..., Nelass} denotes

the corresponding label. Each compact CNN model is fitted
per subject j, f/ R{VthT — RNeass | for feature extraction and
classification. Let fde : RICIXT 5 RNelass be a trained compact
CNN model of subject j for all channels, €, with an input
size of |G| x T. fé : RISIXT 5 RNewss ig a trained compact
CNN model of the jth subject for the subset of all channels
denoted by 8(8 C €), having an input size of |8| x T. Then,
the decoding accuracy of the trained compact CNN model,
fé, of subject j for the subset of all channels, 8, is denoted by
A/S = Acc(fé, D;j, 8). Decoding accuracies of all subjects are

denoted by Ag = [A1 e Ag‘rbj ]. Architectural details of this
compact CNN model, f, are described in the supplementary
material in IEEExplore.

The objective of the proposed algorithm is to identify a min-
imum channel set across subjects denoted by Spsc, based on
any given dataset, D, using the compact CNN model, f, that
satisfies

gMC =arg min_ |Syc]|
SMCeG
s.t. eqvt(Asg,,.,Ae) < a or Ag,. > Ae (1)

where |-| is the cardinality of the set, « is the threshold for
statistical significance, Ag we 18 the mean accuracy of Ag,,.,
Ac is the mean accuracy of Ae, and eqvt(As,,.,Ae) is the
equivalency test comparing decoding accuracies that use the
minimum channel set and those that use all channels. In
this study, we define the minimum channel set as a sub-
set of all channels producing decoding accuracies statistically
equivalent to (or higher than) the one using all channels.

B. Minimum-Channel Selection Using Compact CNN
Framework

As mentioned earlier, because the compact CNN approach
is specifically optimized to a limited dataset size of EEG
signals, and neurophysiologically interpretable features can
be extracted from the compact CNN model [31], the com-
pact CNN is employed for minimum-channel selection in the
present study. To evaluate each channel’s effect in decoding
performance, the proposed channel-selection method is based
on the sequential floating-forward selection algorithm [42],
which starts with the most important channel based on its con-
tribution to decoding performance. It gradually adds the other

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 9, SEPTEMBER 2022

channels one-by-one while checking the improvement of the
decoding accuracy updated by the just-added channel. The first
training session using all channels is only used to measure the
individual contribution of each channel. To individually eval-
uate each channel’s contribution to decoding performance, the
decoding accuracies of the trained model are computed using
all but one channel set to zero. We hypothesize that the chan-
nel scoring higher decoding accuracy will be considered more
essential in relation to the given paradigm than that of the
lower decoding accuracy.

The compact CNN-based algorithm for minimum-channel
selection consists of the following two steps: 1) minimum
channel selection within each subject based on each channel’s
contributing score to decoding performance and 2) the mini-
mum channel selection across subjects based on step 1 (see
Algorithm 1 and Fig. S1 in the supplementary material). In the
first step, the contributing score of each channel is individually
computed by calculating the decoding accuracy of the trained
compact CNN model with all but one channel set to zero.

First, we train the compact CNN model for all channels, C,
per each subject. For the process of the all-but-one-channel set
to zero, a binary mask, M; € RN#*T s applied to preserve
only channel, c;, as follows:

1, ifn=1i
0, otherwise

Mi(n,m) = { 2)
where n and m are the row and column indices of the binary
mask, respectively. Using this binary mask, the input EEG
signal, X, is masked while preserving only one-channel, c;,
as follows:

X = XioM;. 3)

The function © denotes the elementwise multiplication. The
decoding accuracy of f‘@ for the masked-input EEG signal that
preserves only one channel, c¢;, is counted as the contributing
score (SC) for each channel, c;

SC; = ACC(]?@, De, C,')
1 Nirial

= Now 2= 3 (Fe (X7+7). ) @)

k=1

where D¢ is the dataset that preserves a channel, c¢;, using
M;, and §(x, y) is the delta function that is one if y is the
predicted class of x and zero otherwise. It is assumed that
a channel yielding higher decoding accuracy will be regarded
as more important in terms of its contribution to decod-
ing performance than one having lower decoding accuracy.
Thus, a larger Z-score indicates a larger contribution to decod-
ing performance. To determine the set of minimum channels
within each subject, the Z-score transformation of contributing
scores for channel c; is used

§C; — MUsc .
i=—, i=
Osc

. Nen 5)

where pse = (1/Nep) Zfiﬁ sc; and oy are the mean and

standard deviations of the contributing scores, respectively.
Channels having a Z-score greater than the threshold, p = 1.96
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(i.e., 95% confidence interval), are selected as the minimum
channels for subject j, denoted as S]indivMC

S{ndivMC = {ci : Zi>1.96}. (6)

This procedure is conducted for each subject. Subsequently,
the minimum channel set per subject is obtained as Sindivmc =
{8 divmcs - -+ SﬁZ{VMC}, where 8] ;. vic € €. For stopping
criteria to determine the minimum channels across subjects,
the decoding accuracy of subject j for all channels is computed
as follows:

Ay = Acc(fg, D}, e). 7

In the second step, the minimum channels across subjects
are determined using iterative searching, based on whether it
yields decoding accuracy statistically equivalent to (or higher
than) that of all channels in the level of all subjects. Let n;
be the number of occurrences of channel ¢; in the minimum-
channel sets combined from all subjects, Singivmc. Let G2k
be reordered from the set of all channels, €, based on their
occurrence frequencies, n;. Before the iterative-searching pro-
cess for a minimum-channel set, Syc, that is generalized
across all subjects, initial minimum-channel candidates are
selected using the same Z-score criterion that is applied to
determine the minimum channels within each subject. The ini-
tial minimum-channel candidates are considered as the most
probable channels (noted as 8,,, in the algorithm) when those
channels are included in the most frequently (greater than
95% confidential interval) selected channels across all sub-
jects. A candidate set of minimum channels, 8¢, is evaluated
until the following stopping criterion is satisfied. The stop-
ping criterion is defined such that the decoding accuracies
using the minimum channels, Asg,, ., are statistically equivalent
to (or higher than) those using all channels Ae. To statisti-
cally examine the equivalence between these two decoding
accuracies, two one-sided t-tests (i.e., equivalence tests) are
used [43]. For this test, the null hypothesis states that differ-
ences between decoding accuracies from using all channels
and the minimum-channel set are large enough to be consid-
ered worthwhile. If the null hypothesis is rejected, then the
decoding accuracies between all channels and the minimum-
channel set can be regarded as statistically equivalent. Even if
the null hypothesis is accepted, there are two expected cases:
the selected channels produce either lower or higher decoding
accuracies than when using all channels. In the case of higher
decoding accuracy being detected, the iteration procedure of
channel selection is also stopped because even a small set
of selected channels can yield better decoding performance
than all channels. If the stopping criterion is not satisfied,
the set of minimum-channel candidates, Sysc, is sequentially
updated with an additional channel, based on the systematic
comparison between the decoding accuracy of current ¢ and
previous ¢t — 1 iterations, that is: 1) if the newly updated
accuracy is higher than the result obtained by the previous
iteration, the next-ranked channel, cff‘flk, is added to the set
of minimum-channel candidates, Sy;c and 2) if the newly
updated accuracy is lower than the result obtained by the

previous iteration, the channel, c{ank, that was recently added
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in the current iteration is rejected, and the next-ranked channel,
¢r+1, is added to the set of minimum-channel candidates, Sysc.
Although, in this study, we employed a sequentially adding-
channel approach until the next-ranked channel in performance
priority did not contribute to an increase in current accuracy,
other methodological approaches are also applicable. Thus, the
best approach leading to the highest accuracy should be further
investigated in future studies.

C. Three EEG Datasets for Evaluating the Proposed
Approach

To test whether our algorithm can be applied to different
BMI paradigms, three types of BMI paradigms are analyzed.
Study 1 applies a typical P300-based BMI (auditory task),
and Study 2 applies a new top-down SSVEP-based BMI
(visual task). These studies reanalyze the datasets of previous
studies [38], [39]. Study 3 assesses an MI dataset from other
researchers [40].

In Study 1, the EEG data were recorded from 14 healthy
individuals (seven females; age 28.2 (mean) + 6.8 (standard
deviation) years). In Study 2, the EEG data were recorded from
20 healthy individuals (ten females; age 25.7 + 4.6 years). In
Study 3, the EEG data of 20 healthy individuals (ten females;
age 24.3 + 3.7 years) were randomly selected from the pool
of 52 participants collected [40]. Studies 1 and 2 were con-
ducted in accordance with the ethical guidelines established
by the Institutional Review Board (IRB) of Hallym University
College of Medicine (IRB No. 2016-1013 for Study 1),
Korea University (IRB No. KU-IRB-13-43-A-2 for Study 2),
and the Declaration of Helsinki (World Medical Association,
2013). Study 3 was approved by the IRB of Gwangju Institute
of Science and Technology (IRB No. 20130527-HR-02).

1) Study 1 (Auditory P300): To test a typical P300-based
BMI paradigm, we use an auditory oddball dataset [38].
During EEG acquisition, the participants performed an audi-
tory oddball task [see Fig. 2(a)]. In the oddball paradigm,
two types of stimuli were presented at random. One stimulus
occurred less frequently than the others (i.e., the oddball). The
participant was required to discriminate the rare stimulus (tar-
get) from the frequent ones (standard) by noting the occurrence
of the target, typically by pressing a button [44]-[46]. Because
the P300 component of the event-related potential (ERP)
reflects fundamental cognitive processes [47]-[50] and is often
obtained using the oddball paradigm [51], the oddball task is
employed in this study.

The oddball task consisted of 80 target stimuli and 320 stan-
dard stimuli, which were presented at random. The frequency
of the target stimulus was 8 kHz and that of the standard stim-
ulus was 500 Hz. The length of each auditory stimulus was
200 ms, with 10 ms for each rising and falling phase. Each
auditory stimulus was presented for 200 ms with a variable
interstimulus interval (ISI) ranging randomly between 1300
and 1700 ms, centered at 1500 ms.

2) Study 2 (Steady-State Visually Evoked Potential): To
evaluate the other type of BMI paradigm, a newly proposed
visual top-down SSVEP-based BMI dataset [39] was used.
In the top-down SSVEP paradigm, a 6 x 6-cm grid-shaped
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Fig. 2. Experimental designs of Studies 1, 2, and 3. (a) Study 1: A task-flow
diagram with a series of auditory stimuli comprising both target and standard
sounds. White bars and the letter “S” indicate standard stimuli, and black bars
and the letter “T” indicate target stimuli. During the oddball task, the par-
ticipants were instructed to perform a sound-discrimination task by pressing
a button. (b) Study 2: Top-down SSVEP paradigm with an SSVEP-inducing
grid-shaped line array consisting of three rows (R1-R3) and three columns
(C1-C3) of the individually flickering lines. The middle panel depicts the
examples of attended flickering-line composites (in yellow). (c) Study 3: At
the beginning of each trial, the monitor showed a black screen with a fixation
cross for 2 s; the participant was then ready to perform the MI experiment.
One of two instructions (“left hand” or “right hand”) appeared randomly on
the screen for 3 s, and participants were instructed to imagine four actual
finger movements.
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flickering line array was designed to induce a mentally gener-
ated letter within the restricted visual angle of the participant to
evoke a corresponding SSVEP. To generate individual SSVEPs
based on every flickering line, each row and column had an
individual flickering frequency ranging between 5 and 7.5 Hz
[see Fig. 2(b)]. These frequencies are shown to be effective in
inducing SSVEPs in humans [52], [53].

The underlying concept behind decoding the thoughts of
a participant using SSVEPs induced by our grid-shaped line
array is as follows. When a participant pays attention to a sub-
set of flickering lines, whose combination represents the shape
of a letter or symbol, we expect that the frequencies corre-
sponding to those lines will be detected as dominant SSVEP
features. This experiment comprised four blocks with a short
break in between; each block included 60 trials. In each block,
each of six predefined Korean letters (—, |, L, T, I, and )
was cued ten times for each participant for perception by a 1-s
auditory cue presented 500 ms before the onset of a flicker-
ing grid-shaped line array. The participants were instructed to
simultaneously attend to the two lines that jointly comprised
a letter. Intertrial intervals ranged from 1000 to 1500 ms,
centered at 1250 ms. After a 1-s auditory cue (an analog
instruction sound), which pronounced the Korean letter to
which the participant was required to attend; after a subse-
quent 500-ms buffer period, the grid-shaped line array was
presented for 5 s. The experimental condition had six classes
of stimuli, and each class comprised 40 trials. Consequently,
each experimental condition had 240 trials.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 9, SEPTEMBER 2022

3) Study 3 (Motor Imagery): In Study 3, we analyzed
an EEG dataset of MI of left and right hands, as studied
by other researchers [40]. A BMI experiment for MI was
conducted with 52 participants (19 females; age, 24.8 =+
3.9 years), but the current study randomly selected 20 par-
ticipants (ten females; age, 24.3 £ 3.7 years) among them.
Before beginning the MI experiment, participants were asked
to conduct real hand movements. In the beginning of each trial,
the monitor showed a black screen with a fixation cross for 2 s.
The participant was then ready to perform hand movements
[after the black screen gives a cue to the participant; Fig. 2(c)].
One of two instructions (“left hand” or “right hand”) appeared
randomly on the screen for 3 s, and participants were requested
to move the appropriate hand depending on the instruction
given. After the movement, when the blank screen reappeared,
the participant was given a break ranging randomly from 4.1 to
4.8 s. These processes were repeated 20 times for one class
(one run). If additional details about the experimental protocol
of Study 3 are necessary, please refer to [40].

The MI experiment was conducted using the same paradigm
as the real hand-movement experiment. Participants were
instructed to imagine four actual finger movements: 1) touch-
ing each index; 2) middle; 3) ring; and 4) little finger to the
thumb within 3 s. Each participant practiced these actual fin-
ger movements, then performed the MI experiment. Five or six
runs were performed. After each run, the classification accu-
racy was computed over one run and given to the participant
as feedback to increase motivation. In the present study, we
used only MI data for channel selection.

D. EEG Acquisition and Preprocessing

Regarding Studies 1 and 2, EEG signals were measured
using a BrainAmp DC amplifier (Brain Products, Germany)
with 32 Ag/AgCl electrodes in an actiCAP (Brain Products,
Germany) in accordance with the international 10-10 system.
An electrode was placed on the tip of the nose as a refer-
ence, and a ground electrode was placed at electrode AFz.
Electrode impedances were maintained below 5 k& prior
to data acquisition. The EEG was recorded at 1000 Hz for
Study 1 and 500 Hz for Study 2. The eye-movement activ-
ity was monitored using an electrooculogram (EOG) electrode
placed suborbitally on the left side, and vertical and horizon-
tal electro-ocular activity was computed by using two pairs of
electrodes placed vertically and horizontally with respect to
both eyes (i.e., Fpl and EOG for the vertical EOG, F7, and
F8 for the horizontal EOG). The EOG activity was corrected
offline using independent component analysis [54]. The EEG
was segmented from 500-ms prestimulus to 1000-ms post-
stimulus for Study 1 and from 500-ms prestimulus to 5000-ms
post-stimulus for Study 2. EEG epochs having amplitudes
higher than 4100 ©V or lower than —100 'V and with gradi-
ents higher than 50 ©'V/ms were automatically excluded. Thus,
if the EEG amplitude per unit time (ms) exceeded £50 uV
in every moving time window, the epoch matching this crite-
rion was automatically rejected. In Study 2, EEG data were
downsampled to 125 Hz.

In Study 3, EEG data were recorded at 512 Hz using
a Biosemi ActiveTwo system (BioSemi B.V., The Netherlands)
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with 64 Ag/AgCl electrodes based on the international
10-10 system. To make the number of channels comparable to
Studies 1 and 2, the corresponding 30-out-of-64 channels were
used for further analyses. For preprocessing, Butterworth fil-
tering at the fourth order was used for high-pass and band-pass
filtering. If a band-passed (8-30 Hz) trial had an ampli-
tude greater than £100 puV within 0.5-2.5 ms, the trial
was rejected. The frequency band involved somatosensory
rhythm [55], [56], and the time window was determined using
an algorithm for selecting a discriminative time interval [56].
In addition, this frequency range was employed to mini-
mize any possible high-frequency frontal and temporal muscle
artifacts [57], [58]. All trials for each subject were prepro-
cessed with high-pass filtering and a common average ref-
erence. Then, it was filtered both spectrally (8-30 Hz) and
temporally (0.5-2.5 s after stimulus onset) and downsampled
to 128 Hz.

For each dataset of Studies 1, 2, and 3, each epoch was
amatrix X where the number of rows was the number of samples,
and the number of columns was the number of channels, and
each epoch was associated to a class. In Study 1, 80 epochs were
used for the target condition, and for the standard condition,
the same number of 80 epochs was randomly selected out of
the 320 epochs. Therefore, 80 trials per condition were used,
and each trial’s dimension was 30 channels x 200 time points.
In Study 2, 40 epochs were used for every six conditions, and
each trial’s dimension was 30 channels x 625 time points. In
Study 3, 100 epochs were used for each of two conditions
(i.e., left- and right-hand MI), and each trial’s dimension was
30 channels x 256 time points.

To reveal whether the channel-selected brain regions were
neurophysiologically consistent with the most dominantly acti-
vated brain regions of each BMI paradigm, responsive brain
topographical patterns were additionally computed and com-
pared with the corresponding channel-selected brain regions.

In Study 1, the scalp distribution of the P300 peak was used
because P300 is an ERP component in the time domain. For
Studies 2 and 3, topographical activation patterns for the neu-
ral bases of EEG features [59] were used to efficiently exhibit
their spectral EEG features in the frequency domain. We esti-
mated the activation pattern involving all scalp channels by
computing the correlation between the continuous trialwise
classifier output and the time-course of EEG features from all
channels. Assuming that the task-relevant and task-irrelevant
(i.e., uninformative) signals are uncorrelated, the activation
pattern is given by the correlation between the classifier output
and the time course of individual features [59].

E. Training and Evaluation

To train the compact CNN, the He-normal initializer [60]
was used as the weight initialization method. An Adam
optimizer [61] was employed with a learning rate oo = 0.001,
and decay parameters 1 = 0.9 and B2 = 0.999 were used
to minimize the categorical cross-entropy loss function. The
batch size and training iterations (epochs) were set to 32 and
1000, respectively. An early stopping method was used to train
the model while monitoring the loss on the validation dataset.
The best model was saved by waiting for 200 epochs of no
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improvements to pass before the training was stopped. We split
the dataset into training, validation, and test subsets at portions
of 5:1:2, respectively [62]. The model was trained using the
training set, and the trained model was evaluated using the
validation set to save the best one.

During this process, the training and validation sets were
used to determine the trained model of the minimal-channel
selection, and the remaining trials were then tested using this
trained model. When splitting each fold, trials were equally
distributed across all classes. This decoding procedure was
performed for each participant separately. The decoding accu-
racy was computed based on the signals of all channels.
Finally, to compare this result, the decoding accuracy using
the minimally selected channels was also computed. To sta-
tistically examine whether the decoding accuracies obtained
by using the minimally selected channels were significantly
equivalent to those obtained using all channels, equivalence
tests were performed [43]. The equivalence test yielded statis-
tical significance when p < 0.05, given equivalence bounds
of —2.5 and 2.5 (on a raw scale). Additionally, Pearson’s
correlation coefficients were computed to assess the statisti-
cal relationship between the decoding accuracies of all and
minimal channels.

All analyses were performed using the Python pro-
gramming  language (Python  Software  Foundation,
https://www.python.org), and Keras [63] with a TensorFlow
backend [64] was used for CNN model implementation.

F. Comparisons With Other Algorithms

It is noteworthy that most of the previously proposed
channel selection algorithms [6]-[8] selected an appropriate
subset of channels yielding the best decoding performance.
The present study, by contrast, aims to reduce the num-
ber of EEG channels to the lowest possible number
while maintaining decoding performance that is statisti-
cally equivalent to (or higher than) using all channels. In
this respect, it is difficult to directly compare the present
study with the previous ones. However, given the sta-
tistically equivalent decoding accuracies, the number of
selected channels and neurophysiological accounts of the
selected channel locations can be compared across differ-
ent channel-selection algorithms. Thus, two other channel-
selection algorithms (i.e., LDA [14] and ConvNet [29]) are
introduced to compare performances with the present study.
LDA [14] and ConvNet [29] were employed to select chan-
nels because their performance enables feature training to
decode task-related information with higher efficiency. In the
ConvNet approach, five standard convolutional layers are used.
Using the same dataset, these two algorithms for channel selec-
tion are compared with the proposed compact CNN approach.
Additionally, the standard set of eight channels studied for the
P300-based BMI Study 1: Fz, Cz, P3, Pz, P4, PO7, POS, and
Oz [65]; the SSVEP-based BMI Study 2: PO3, POz, PO4,
PO7, PO8, O1, Oz, and O2 [22]; and the MI-based BMI
Study 3: C3, C4, C5, C6, FC3, FC4, CP3, and CP4 [66]
were parallelly analyzed for performance comparison with our
method. However, because the datasets used in Studies 1 and

Authorized licensed use limited to: Korea University. Downloaded on June 30,2023 at 08:59:17 UTC from IEEE Xplore. Restrictions apply.



8674

TABLE I
COMPARISON OF DECODING ACCURACIES (%) AND NUMBERS OF
SELECTED CHANNELS OBTAINED FOR DIFFERENT CHANNEL-SELECTION
ALGORITHMS IN THE P300-ODDBALL (AUDITORY) PARADIGM (STUDY 1)

AC MC & MP LDA CN

D (30-ch) (2-ch) (19-ch) (5-ch) oM
1 75.0 875 87.5 62.5 875
2 57.1 71.4 71.4 571 167
3 97.1 97.1 94.1 941  94.1
4 87.5 775 85.0 775 85.0
5 66.7 50.0 50.0 66.7 833
6 88.9 75.0 61.1 778 778
7 90.0 95.0 92.5 725 80.0
8 69.2 76.9 84.6 769 929
9 53.8 69.2 61.5 61.5 654
10 90.5 81.0 714 714 818
11 88.5 84.6 88.5 88.5 808
12 92.5 82.5 92.5 825 875
13 78.9 73.7 60.5 737 816
14 78.4 54.1 73.0 56.8 667

Mean __ 79.6 76.8 76.7 728 772

*ID: subject ID; AC: all channels; MC: minimum channels of the compact CNN
(i.e., Cz and FC1); MP: most probable channels of the compact CNN (i.e., Cz
and FC1); LDA: linear discriminant analysis (i.e., Fz, F3, F4, F7, F8, FC1, FC2,
FC5, FC6, Cz, C3, C4, CP1, CP6, P3, P7, T7, T8, and Oz); CN: ConvNet (i.e.,
Fz, FC1, Pz, P3, and Oz); and 6-ch: the standard six channels (i.e., Fz, Cz, Pz,
P3, P4, and Oz). The number of selected channels is noted in parentheses.

2 were based on a 32-channel configuration, only six chan-
nels among the standard eight were available for Study 1
(i.e., Fz, Cz, Pz, P3, P4, and Oz) and only three were avail-
able for Study 2 (i.e., Ol, Oz, and O2). Accordingly, those
available channels were inevitably selected for this compari-
son. To statistically compare the decoding accuracies across
these different algorithms, paired #-tests were employed.

III. RESULTS
A. Study 1

The two centro-frontal channels (Cz and FC1) were auto-
matically selected for the auditory P300-based paradigm using
a compact CNN model. As shown in Fig. 3 and Table I,
the decoding accuracies obtained using compact CNN-based
minimum channels (76.8%) were computed using the model
parameters statistically equivalent to (or higher than) those
obtained using all channels (79.6%). The accuracy ratio of the
minimum channels to all channels was 96.5%. Additionally,
the accuracies computed by using both all channels and mini-
mally selected channels were highly correlated [r(14) = 0.581,
p < 0.05]. From Table 1, it is evident that the central channels
(e.g., Cz and FC1) were also selected as the most probable
channels across all participants. Because these two chan-
nels were identical to the minimally selected channels, this
comparison is not presented in Table I to avoid redundancy.
As shown in Table I, the decoding accuracies of LDA and
ConvNet algorithms were computed using the model param-
eters for minimally selected channels, yielding statistically
equivalent (or better) performance compared with using all
channels (LDA: 76.7%; ConvNet: 72.8%). Additionally, their
numbers of selected channels were adversely more numer-
ous than that of the compact CNN (compact CNN: 2; LDA:
19; ConvNet: 5). Furthermore, their selected channels did not
match with the neurophysiologically interpretable region. This
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Fig. 3. Comparison between the decoding accuracies obtained using all
channels and those obtained using the compact CNN-based minimal channels
(Cz and FC1) for 14 participants (Study 1). Error bars represent standard
deviations.
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Fig. 4. Comparison between the decoding accuracies obtained using all
channels and those obtained using a compact CNN-based minimal channels
(Oz, O1, 02, and P4) across 20 participants (Study 2). Error bars represent
standard deviations.

means that the locations of selected channels were not focused
on the vertex of the brain, which is the dominantly activated
region during the performance of auditory P300 paradigm
(LDA: Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3,
C4, CP1, CP6, P3, P7, T7, T8, and Oz; ConvNet: Fz, FCI,
Pz, P3, and Oz). Although the typical six channels yielded
significantly similar decoding accuracies to the compact CNN
[#(13) = —0.077, ns; compact CNN: 76.8%; 6-ch: 77.2%], the
compact CNN was advantageous in terms of the fewer number
of minimally selected channels (compact CNN: 2; 6-ch: 6).

B. Study 2

The four occipito-parietal channels (Oz, Ol, 02,
and P4) were automatically selected for the top-down
SSVEP-BMI paradigm using a compact CNN model. Fig. 4
and Table II demonstrate the decoding accuracies of all
20 participants. The average accuracy of the minimum
channels was 58.3%, computed using the model parameters
significantly equivalent to (or higher than) those of all
channels (54.7%). The ratio of their decoding accuracies
(minimum channels versus all channels) was 106.6%.
Additionally, the accuracies computed using all channels
and minimally selected channels were highly correlated
[7(20) = 0.794, p < 0.001]. From Table II, it is evident
that the occipital channels, Oz and O1, were selected as the
most probable channels across all participants. As shown
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TABLE 11
COMPARISON OF DECODING ACCURACIES (%) AND NUMBERS OF
SELECTED CHANNELS OBTAINED FOR DIFFERENT CHANNEL-SELECTION
ALGORITHMS IN THE TOP-DOWN SSVEP (VISUAL)
PARADIGM (STUDY 2)

8675

TABLE III
COMPARISON OF DECODING ACCURACIES (%) AND NUMBERS OF
SELECTED CHANNELS OBTAINED FOR DIFFERENT CHANNEL-SELECTION
ALGORITHMS IN THE MI PARADIGM (STUDY 3)

D AC MC MP LDA CN 8-ch

D AC MC MP LDA CN 3-ch (30-ch) (4<ch) (2ch) (3-ch)  (6-ch)
(30-ch) (4ch) (2-ch) (2-ch)  (4-ch) 1 85.7 85.7 67.4 63.3 69.4 77.6
1 18.3 61.7 21.7 18.3 15.0 63.3 2 62.0 88.0 68.0 76.0 78.0 84.0
2 83.3 70.0 46.7 31.7 68.3 733 3 52.5 67.5 55.0 65.0 57.5 60.0
3 83.3 86.7 58.3 333 85.0 66.7 4 68.0 76.0 72.0 52.0 58.0 66.0
4 48.3 46.7 333 26.7 26.7 50.0 5 76.0 50.0 46.0 44.0 60.0 50.0
5 60.0 733 533 21.7 51.7 733 6 66.7 56.7 533 60.0 66.7 71.7
6 30.0 30.0 28.3 15.0 183 36.7 7 52.0 46.0 48.0 66.0 36.0 54.0
7 85.0 90.0 68.3 48.3 81.7 96.7 8 66.0 64.0 48.0 62.0 58.0 56.0
8 68.3 61.7 60.0 133 71.7 86.7 9 64.0 56.0 58.0 64.0 54.0 78.0
9 76.7 76.7 46.7 35.0 83.3 76.7 10 52.0 74.0 60.0 72.0 54.0 62.0
10 60.0 45.0 45.0 45.0 20.0 36.7 11 94.0 94.0 74.0 86.0 96.0 94.0
11 383 55.0 333 283 483 66.7 12 98.0 96.0 70.0 94.0 94.0 98.0
12 70.0 86.7 65.0 35.0 20.0 80.0 13 76.0 78.0 78.0 78.0 90.0 86.0
13 18.3 233 21.7 25.0 10.0 26.7 14 94.0 86.0 88.0 84.0 88.0 94.0
14 233 40.0 35.0 18.3 16.7 46.7 15 42.6 63.8 59.6 57.4 46.8 59.6
15 70.0 45.0 233 11.7 18.3 333 16 76.1 67.4 52.2 78.3 522 63.0
16 45.0 45.0 26.7 20.0 15.0 40.0 17 68.0 66.0 66.0 72.0 52.0 50.0
17 48.3 50.0 36.7 30.0 65.0 46.7 18 46.9 63.3 53.1 51.0 55.1 65.3
18 56.7 55.0 51.7 31.7 18.3 50.0 19 64.0 64.0 46.0 52.0 70.0 72.0
19 95.0 86.7 75.0 13.3 71.7 833 20 72.0 74.0 76.0 66.0 76.0 86.0
20 16.7 36.7 233 217 16.7 36.7 Mean 68.8 70.8 61.9 67.1 65.6 71.4

Mean 54.7 58.3 42.7 26.2 41.1 58.5 *ID: subject ID; AC: all channels; MC: minimum channels of the compact CNN

*ID: subject ID; AC: all channels; MC: minimum channels of the compact CNN
(i.e., Oz, Ol, 02, and P4); MP: most probable channels of the compact CNN
(i.e., Oz and Ol); LDA: linear discriminant analysis (i.e., Oz and O2); CN:
ConvNet (i.e., Oz, O1, 02, and P3); and 3-ch: the standard 3 channels (i.e., Oz,
01, and 02). The number of selected channels is noted in parentheses.

in Table II, the decoding accuracies of LDA and ConvNet
algorithms were computed using the model parameters for
minimally selected channels, yielding statistically equivalent
(or better) performance, compared with using all channels
(LDA: 26.2%; ConvNet: 41.1%). Although the compact CNN
and LDA methods shared the two occipital channels (i.e.,
Oz and O2) as the minimally selected ones, the decoding
accuracy of LDA was significantly lower than that of the
compact CNN [#(19) = 7.555, p < 0.001; compact CNN:
58.3%; LDA: 26.2%]. Regarding the ConvNet, although the
number of selected channels using ConvNet was the same as
that of the compact CNN (compact CNN: 4; ConvNet: 4),
the decoding accuracy of ConvNet was significantly lower
than that of the compact CNN (#(19) = 3.959, p < 0.005;
compact CNN: 58.3%; ConvNet: 41.1%). The typical three
channels yielded significantly similar decoding accuracies
to the compact CNN [#(19) = —0.120, ns; compact CNN:
58.3%; 3-ch: 58.5%]

C. Study 3

The four centro-lateral channels (i.e., C3, C4, FC5, and
PO7) were automatically selected for the MI paradigm using
a compact CNN model. As shown in Fig. 5 and Table III,
the decoding accuracies obtained using compact CNN-based
minimum channels (70.8%) were computed using the model
parameters for minimally selected channels, which yielded
statistically equivalent (or better) performance compared
to using all channels (68.8%). The accuracy ratio of the
minimum channels to all channels was 102.9%. Additionally,
these accuracies were highly correlated (r(20) = 0.633,

(i.e., C3, C4, FC5, and PO7); MP: most probable channels of the compact CNN
(i.e., C3 and FC5); LDA: linear discriminant analysis (i.e., C3, C4, and P3); CN:
ConvNet (i.e., F3, FC2, C3, CP2, CP6, and P4); and 8-ch: the standard eight
channels (i.e., C3, C4, C5, C6, FC3, FC4, CP3, and CP4). The number of
selected channels is noted in parentheses.
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Fig. 5. Comparison between the decoding accuracies obtained using all
channels and those obtained using a compact CNN-based minimal channels
(C3, C4, FC5, and PO7) across 20 participants (Study 3). Error bars represent
standard deviations.

p < 0.005). From Table III, it is evident that the two
centro-frontal channels (i.e., C3 and FC5) were selected as
the most probable channels across all participants. As shown
in Table III, the decoding accuracies of LDA and ConvNet
algorithms were computed using the model parameters for
minimally selected channels, which yielded statistically
equivalent (or better) performance compared to using all
channels (LDA: 67.1%; ConvNet: 65.6%). Although the
number of minimally selected channels by LDA was one
less than that of the compact CNN (compact CNN: 4; LDA:
3), the decoding accuracy of LDA was not significantly
different from that of the compact CNN (#(19) = 1.559, ns).
Regarding ConvNet, its number of selected channels (i.e.,
six) was higher than that of the compact CNN (i.e., 4), and
the selected channels of ConvNet were not located around the
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Fig. 6. Topographical distributions of the grand-averaged decoding accuracy
of (a) Study 1, (b) Study 2, and (c) Study 3 after the final search for a set of
minimal channels. The minimally selected channels for each modality (audi-
tory for Study 1, visual for Study 2, and motor for Study 3) are highlighted.
Their corresponding neurophysiologically responsive topographical patterns
are also displayed in parallel: (d) for Study 1, (e) for Study 2, and (f) for
Study 3. Note the consistently overlapped brain regions across these two
approaches: minimal-channel selection and task-relevant activation pattern, in
all three paradigms. The topographical view is from the vertex, with the nasion
at the top right of the image. Color-scaled bars represent the grand-averaged
decoding accuracies of each channel for (a), (b), and (c); P300 amplitudes
for (d); and amplitudes of activation-pattern maps for (e) and (f).

neurophysiologically interpretable regions (i.e., C3 and C4 for
MI). Although the typical eight channels yielded significantly
decoding accuracies similar to those of the compact CNN
[#(19) = —0.245, ns; compact CNN: 70.8%; 8-ch: 71.4%],
the compact CNN was advantageous in terms of having fewer
minimally selected channels (compact CNN: 4; 8-ch: 8).

As shown in Fig. 6, Studies 1, 2, and 3 exhibited the
most prominent regions of the brain (i.e., centro-frontal
regions for the auditory paradigm, occipital regions for the
visual paradigm, and lateralized central regions for the MI
paradigm) for automatic selection of minimal EEG channels.
As shown in Fig. 6, the locations of neurophysiological acti-
vation overlapped considerably with those of the compact
CNN-based channel-selections in each experimental paradigm.
These consistent topographical overlappings imply that the
proposed deep-learning approach can provide neurophysiolog-
ically explainable results.

A brief demonstration of our automatic selection of the com-
pact CNN-mediated minimal channels for EEG-based BMISs is
presented as a video clip in the supplementary material (see
Supplementary Video Clip 1).

IV. DISCUSSION

In this study, a deep-learning approach for minimum-
channel selection was evaluated using three EEG datasets:
1) auditory [38]; 2) visual [39]; and 3) motor-imagery [40]
BMI datasets, each with their dataset sizes and feature
characteristics. By applying a compact CNN model [31],
we identified an optimally minimized channel set for all
of these different EEG-based BMI paradigms with neuro-
physiologically consistent rationales (Fig. 6). Accordingly,
we validated that the compact CNN in the EEG chan-
nel selection was generally applicable across different BMI
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paradigms in the presence of limited data and could extract
neurophysiologically interpretable features. Generally, because
ocular artifacts (e.g., eye movements and blinks) are regarded
as the major interference in EEG-based BMI studies, artifact
compensation methods, such as independent component anal-
ysis or adaptive filters, are frequently introduced to isolate
pure cerebral EEG signals [67]. However, because the com-
pact CNN of the EEGNet model is principally designed to
extract neurophysiologically significant features (interpretable
with a given task) as opposed to artifact or noise features [31],
the proposed channel selection method is robust against task-
irrelevant artifact contamination. Furthermore, the decoding
accuracies obtained using the minimum channels were statis-
tically equivalent to (or even higher than) those obtained using
all channels. This provided us with a feasible concept for the
automatic selection of optimized minimal EEG channels using
a compact CNN model, thereby aiding in the development of
a potent portable BMI technology.

In the auditory EEG oddball paradigm, the channels Cz and
FC1 were selected as the minimum channels as well as the
most probable channels across all the participants. Because
the dipole sources of auditory processing generate the most
prominent activity around the vertex of the brain (i.e., the
location of the Cz channel) [68], we consistently observed an
automatic selection of centro-frontal channels in the auditory
EEG paradigm. These channels were minimally selected based
on the compact CNN model, which yielded decoding accura-
cies statistically equivalent to (or higher than) those that used
all channels. This implies that only the minimally selected
channels could sufficiently represent the decoding performance
generated by all channels. Furthermore, this minimal set of
channels was also consistent with the task-relevant neuro-
physiological activities. Because the oddball task required
participants to respond actively based on a cognitive decision
related to the presented stimulus type during the performance
of the task, the results obtained from this task were interpreted
principally as auditory top-down effects.

Similarly, in the visual top-down SSVEP paradigm, the
two occipital channels (i.e., Oz and O1) were selected as the
most probable channels across all participants. These occip-
ital channels were a concise set of representative channels
that best reflected the characteristics of the visual top-down
SSVEP-BMI paradigm. This finding is consistent with neu-
rophysiological rationales because the occipital regions of
these channels are around the primary visual cortex, which
is considered an essential brain region for processing the top-
down SSVEP-BMI task. Moreover, the compact CNN-based
occipito-parietal channels (i.e., Oz, O1, 02, and P4), centered
at the most probable two occipital channels, were mini-
mally selected based on the model parameters, which yielded
decoding accuracies statistically equivalent to (or higher than)
those from using all channels. This indicates that the min-
imally selected occipito-parietal channels were sufficient for
computing the decoding accuracy of all channels.

This study, which used the compact CNN model, also
yielded a distinctly enhanced decoding accuracy (54.7% using
all channels and 58.3% using the four minimally selected
occipito-parietal channels) when compared with the previous
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study, which used regularized LDA with shrinkage (35.8%
using all channels and 42.5% using the three occipital chan-
nels) [39]. This implies that the deep-learning approach
improved the decoding performance when compared with the
linear machine-learning technique. This obvious enhancement
in decoding performance is another advantage of the compact
CNN classifier over the linear classifier of the SSVEP dataset
using minimal channel subsets. Furthermore, this study con-
sistently provided neurophysiologically interpretable accounts
(see Fig. 6), although one of the issues still debated in deep-
learning studies is whether or not it is explainable. In this
respect, the current deep-learning-based decoding approach
may contribute to a feasibility study that could shed light on
the potential explanations underpinning artificial intelligence.

Regarding the MI paradigm, the compact CNN-based
centro-lateral channels (i.e., C3, C4, FC5, and PO7) were
minimally chosen based on model parameters, which yielded
decoding accuracies statistically equivalent to (or higher than)
those of using all channels. This observation is also consistent
with the neurophysiological findings of motor imagery [69].
During an MI task, hand positions of the motor homunculus in
both hemispheres are located around the C3 and C4 positions
within the primary motor cortex, respectively, for right/left-
hand motor imagery [70]. For example, distinct MI patterns
emerge for both symmetric bilateral C3 and C4 positions
using EEG phase synchronization combined with spectral
activity [71]. All these observations reflect that the proposed
channel selection method yielded a paradigm-independent
robust performance with consistent neural significance.

In principle, the performance evaluation of the neural
network with all but one channel set to zero would pro-
vide lower performance than using all channels. However, the
minimal channels yielded decoding performances statistically
equivalent to (or even higher than) those of all channels in
the present study. This is understandable from the viewpoint
of the characteristics of EEG signals. This also means that
it is common in EEG studies that a few selected channels
around the task-relevant brain regions (rather than all channels)
can achieve the best decoding performance. This is because
the most activated brain regions are principally based on the
neurophysiologically regional characteristics of specific cog-
nitive tasks. Therefore, the EEG signals (or features) from
task-irrelevant channels (located around the less or nonac-
tivated brain regions) might not be informative. Thus, they
could disrupt optimal performance [72], [73]. Accordingly,
only a small number of task-relevant channels can often yield
significantly higher performance than all channels that include
task-irrelevant ones [39]. These special characteristics of EEG
signals in the convolutional filters provide an advantageous
rationale for the feasibility of deep-learning-based minimal-
channel selection. Simultaneously, due to this task-dependent
regional specificity, the proposed channel-selection technique
would not require relatively large amounts of data, as required
for a deep-learning approach.

Compared with other channel-selection algorithms (i.e.,
LDA [14] and ConvNet [29]), the present study showed the
highest decoding accuracies using a reasonably lower number
of selected channels while maintaining decoding performance
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statistically equivalent to (or even higher than) that of all
channels. It also provided neurophysiologically interpretable
accounts for selected channels. For example, compared with
LDA and ConvNet, the number of minimally selected chan-
nels from the compact CNN in Study 1 was lowest, and its
decoding accuracies were highest. The minimal channels of
LDA adversely included 17 more channels compared to those
of the compact CNN, and the selected channels by LDA were
sparsely distributed over the brain (eccentric from the ver-
tex, Cz), which was not neurophysiologically interpretable
for auditory P300 paradigm. Regarding Study 2, although
the numbers of minimally selected channels were compara-
ble across different channel-selection algorithms, the compact
CNN yielded significantly higher decoding accuracies, com-
pared with LDA and ConvNet. Furthermore, the number of
selected channels by ConvNet (i.e., six) is higher than that of
the compact CNN (i.e., four) in Study 3. The selected channels
of ConvNet were not located around the neurophysiologically
interpretable regions (i.e., C3 and C4) for MI. The number
of minimally selected channels by ConvNet was disadvanta-
geously more than that of the compact CNN in both Studies
1 and 3. Notably, the number of minimally selected channels
by LDA profoundly varied, depending on the type of BMI
paradigms (e.g., 19 for Study 1 and three for Study 3). Taken
together, these observations reflect that the compact CNN is
more robust and stable across different BMI paradigms.

Our observation of these task-relevant and neurophysio-
logically significant channels as a minimum-channel set for
decoding users’ intention is advantageous for portable EEG-
based BMIs. For example, installation and computing time
can be decreased by reducing the number of EEG channels
for BMIs. This is vital for the real-time application of the
BMI technology. A reduced number of channels enables BMI
users to be more comfortable and may substantially reduce
the financial cost of setup from the viewpoint of their practi-
cal applications. For example, a type of EEG-BMI could be
efficiently and conveniently controlled by a headband-shaped
EEG acquisition device (or embedded in a head-mounted
device), which would have only selected channels for BMI
control. In future studies, we will attempt to apply this
approach to other types of BMIs to validate its general-
ity and expandability. In several domain applications, CNNs
have been very successful, because they can learn the most
task-relevant features. However, their performance principally
depends on their architectures and learnable hyper-parameters.
Thus, the parameter optimization for channel selection in the
present study is newly suggested to the EEG-based BMI
field. Nonetheless, we will continuously attempt to further
improve the efficiency of the minimum-channel selection in
future studies. For example, because fast sparse CNNs for
enhanced efficiency and higher accuracy have recently been
proposed with increased accuracies and a reduced number of
parameters [74], the number of learnable parameters in this
study could be further reduced by replacing the standard con-
volutional layer with depthwise and separable convolutional
layers, resulting in higher accuracies. From a practical view-
point, the proposed method could also be improved using
transfer-learning methods [75], [76]. Using transfer learning,
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a pretrained model with selected minimum channels could be
directly applied to new subjects without a calibration phase,
which is typically time consuming for EEG-based BMIs.
Additionally, as the graph theory perspective might open new
insight into classical classification-based approaches, the prob-
abilistic graphical models in future studies could enhance the
performance of channel selection because these types of mod-
els can learn the relationship between the activation areas
and BMI-tasks. For example, a common Bayesian network
was proposed to discriminate multiclass MI EEG signals [77].
Altogether, the deep-learning-based channel selection would
improve processing speed and accuracy, which benefits the
feasibility and portability of EEG-based BMI technology.

The present study has some implicational constraints that
are worth mentioning. First, based on our current observa-
tions under a limited number of given tasks, we could not
address the causal relationships between minimal and optimal
channels. Furthermore, checking whether or not the minimum
number of channels was actually optimal across a variety
of experimental paradigms or tasks was out of the scope
of the present study. This presents a potential topic for our
future studies. However, it would be advantageous if the
minimum number of channels was to yield optimal decod-
ing performance at least in a certain type of experimental
paradigm or task. Applying a minimized number of EEG chan-
nels would enable EEG-based BMIs to be compact and more
portable, which is surely advantageous to their practical use.
In the present study, using three representative cognitive tasks,
we provided a preliminary investigation of their relationships.
Thus, apart from the consistent observations across different
experimental paradigms, the relationship between minimal and
optimal channels in the presence of limited data should be
carefully considered when interpreting our results based on
a deep-learning-based decoder.

There are also crucial limitations in the deep-learning-based
decoder, which constrains the ways we can collect suffi-
cient datasets. Although the number of EEG data is usually
insufficient for a deep-learning approach and thus impedes
EEG-based deep learning, there are growing efforts to over-
come this constraint by utilizing several data-augmentation
methods, such as generative adversarial networks [32], [33];
empirical mode decomposition [34], [35]; or random trans-
formations (e.g., jittering, rotation, scaling, or frequency
warping) [36]. However, in the present study, the compact-
CNN approach of EEGNet was employed, which could be
optimized to a relatively small dataset of EEG signals with-
out the need for vast data augmentation [31]. Furthermore,
because the most activated brain regions are principally
based on the neurophysiologically regional characteristics of
specific cognitive tasks (i.e., task-dependent regional speci-
ficity), the proposed method for channel selection would not
require large amounts of data to reach the optimal decision
of minimal channels. Moreover, because the present study
employed only three layers of a neural network, which provide
a shallow network rather than the highly complicated archi-
tecture (or higher data dimensionality) typically observed in
the deep-learning studies of CNNs, such as GoogleNet [78],
ReNet [79], Xception [80], and EfficientNet [81], the present
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study did not use big data, which is typically required for deep
networks. In summary, the dataset size would not be highly
problematic in this study. Despite these exemptions, the limited
dataset size should be carefully considered when interpreting
our results.

V. CONCLUSION

In this study, we investigated an automatic selection algo-
rithm for three representative types (auditory versus visual
versus motor) of BMI paradigms. Irrespective of the types
of task paradigms and input EEG features, an optimized
minimal EEG channel set can be selected using a deep-
learning model customized to the small dataset of EEG signals.
This compact CNN method produces considerably reliable
decoding accuracies using minimally selected channel sub-
sets, which are statistically equivalent to (or even higher than)
those using all channels. Furthermore, the channel-selection
approach proposed by a compact CNN classifier yields signif-
icantly higher decoding accuracy than that by a linear classifier
typically used for the SSVEP dataset. The proposed deep-
learning method of EEG channel selection innovatively con-
firms its capability of extracting and harnessing interpretable
EEG features generally corresponding to known neurophysi-
ological observations (Fig. 6), providing compelling evidence
favorable for the current hot issue of explainable artificial
intelligence. Such neurophysiologically corresponding results
of channel selection are consistently observed, irrespective of
the type of experimental modalities (P300: auditory; SSVEP:
visual; and MI: motor modality). By comparison, previous
channel-selection studies have typically dealt with single
modalities [7], [8], [82]. Moreover, the proposed approach
does not rely on specific input EEG features, so it can be based
on either the time domain (i.e., ERP or evoked potential),
frequency domain (e.g., SSVEP flickering frequency), or time-
frequency domain (e.g., event-related (de)synchronization in
MI). Therefore, the proposed technique is generalized more
than previously proposed channel-selection methods. It would
be advantageous if the algorithm were designed to take the
raw data without prior knowledge of the important features,
determine the minimum channels, and achieve comparable
classification accuracies. However, due to the current limita-
tions in EEG-based BMI technology, this could be the focus
of one of our future studies on the fewest channel selection in
BMIs. As big data, typically advantageous for a deep-learning
technique, are progressively collected for each cognitive task,
the generality of the proposed deep-learning approach to the
various repertoires of BMI tasks would be reinforced and fur-
ther stabilized. In short, these notions reflect several potential
advantages of the present deep-learning-based approach over
existing channel-selection methods for the EEG-based BMIs.

The proposed deep-learning-based automatic channel-
selection system could become a potential future technology
for portable EEG-based BMIs. The fewer the number of chan-
nels used, the smaller the amount of data will be required.
Consequently, the processing speed and portability of the
EEG-based BMIs would be improved. This novel approach
could, in principle, use an adaptive-learning approach on var-
ious BMI paradigms: a technique that may ultimately become
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useful for future channel-selection techniques applicable to
state-of-the-art BMI software platforms, such as Web-based
BMIs [83]. This study demonstrates that a deep-learning tech-
nique on EEG signals can provide promising and potent
task-relevant EEG features that enable practical and ubiquitous
channel-selection applications for the BMI technology.

ACKNOWLEDGMENT

The authors are grateful to Seong-Eun Kim for his valuable
comments on this study and to Ji-Wan Kim for his assistance
during EEG acquisition.

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

D. Tan and A. Nijholt,“Brain—computer interfaces and human-computer
interaction,” in Brain-Computer Interfaces. London, U.K.: Springer,
2010, pp. 3-19.

B. Allison, B. Graimann, and G. Pfurtscheller, Brain—Computer
Interfaces: Revolutionizing Human—Computer Interaction. Heidelberg,
Germany: Springer, 2010.

J.-H. Kim, F. BieBmann, and S.-W. Lee, “Decoding three-dimensional
trajectory of executed and imagined arm movements from electroen-
cephalogram signals,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23,
no. 5, pp. 867-876, Sep. 2015.

B.-K. Min, R. Chavarriaga, and J. D. R. Millan, “Harnessing
prefrontal ~ cognitive  signals for  brain-machine interfaces,”
Trends Biotechnol., vol. 35, no. 7, pp.585-597, Jul. 2017,
doi: 10.1016/j.tibtech.2017.03.008.

L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a
review,” Sensors, vol. 12, no. 2, pp. 1211-1279, 2012.

M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, “Optimizing the channel
selection and classification accuracy in EEG-based BCL,” IEEE Trans.
Biomed. Eng., vol. 58, no. 6, pp. 1865-1873, Jun. 2011.

T. Alotaiby, F. E. A. El-Samie, S. A. Alshebeili, and I. Ahmad,“A review
of channel selection algorithms for EEG signal processing,” EURASIP
J. Adv. Signal Process., vol. 2015, no. 1, p. 66, 2015.

M. Schroder et al., “Robust EEG channel selection across subjects
for brain-computer interfaces,” EURASIP J. Appl. Signal Process.,
vol. 2005, pp. 3103-3112, Nov. 2005.

F. Qi et al.,““Spatiotemporal-filtering-based channel selection for single-
trial EEG classification,” [EEE Trans. Cybern., vol. 51, no. 2,
pp. 558-567, Feb. 2021.

B. Chakraborty, L. Ghosh, and A. Konar, “Optimal selection of EEG
electrodes using interval type-2 fuzzy-logic-based semiseparating sig-
naling game,” IEEE Trans. Cybern., early access, Feb. 20, 2020,
doi: 10.1109/TCYB.2020.2968625.

Y. Wang, S. Gao, and X. Gao, “Common spatial pattern method for
channel selelction in motor imagery based brain-computer interface,” in
Proc. IEEE 27th Annu. Conf. Eng. Med. Biol., Shanghai, China, 2006,
pp. 5392-5395.

J. Meng, G. Liu, G. Huang, and X. Zhu, “Automated selecting subset
of channels based on CSP in motor imagery brain-computer interface
system,” in Proc. IEEE Int. Conf. Robot. Biomimetics (ROBIO), Guilin,
China, 2009, pp. 2290-2294.

T. N. Lal et al., “Support vector channel selection in BCI,” IEEE Trans.
Biomed. Eng., vol. 51, no. 6, pp. 1003-1010, Jun. 2004.

K. A. Colwell, D. B. Ryan, C. S. Throckmorton, E. W. Sellers, and
L. M. Collins, “Channel selection methods for the P300 speller,” J.
Neurosci. Meth., vol. 232, pp. 6-15, Jul. 2014.

A. Barachant and S. Bonnet, “Channel selection procedure using
Riemannian distance for BCI applications,” in Proc. 5th Int. IEEE/EMBS
Conf. Neural Eng., Cancun, Mexico, 2011, pp. 348-351.

H. Cecotti et al., “A robust sensor-selection method for P300 brain—
computer interfaces,” J. Neural Eng., vol. 8, no. 1, 2011, Art. no. 016001.
L. Q. Thang and C. Temiyasathit, “Investigation of regularization the-
ory for four-class classification in brain—computer interface,” in Future
Data and Security Engineering. Cham, Switzerland: Springer, 2014,
pp. 275-285.

J. Farquhar and N. J. Hill, “Interactions between pre-processing and clas-
sification methods for event-related-potential classification: Best-practice
guidelines for brain—computer interfacing,” Neuroinformatics, vol. 11,
no. 2, pp. 175-192, 2013.

I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Miiller, “Interpretable
deep neural networks for single-trial EEG classification,” J. Neurosci.
Meth., vol. 274, pp. 141-145, Dec. 2016.

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

8679

Z. Mao, “Deep learning for rapid serial visual presentation event from
electroencephalography signal,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Univ. Texas San Antonio, San Antonio, TX, USA, 2016.

D. Mzurikwao et al., “A channel selection approach based on convolu-
tional neural network for multi-channel EEG motor imagery decoding,”
in Proc. IEEE 2nd Int. Conf. Artif. Intell. Knowl. Eng. (AIKE), Sardinia,
Italy, 2019, pp. 195-202.

N.-S. Kwak, K.-R. Miiller, and S.-W. Lee, “A convolutional neu-
ral network for steady state visual evoked potential classification
under ambulatory environment,” PLoS ONE, vol. 12, no. 2, 2017,
Art. no. e0172578.

F. Lotte et al., “A review of classification algorithms for EEG-based
brain—computer interfaces: A 10 year update,” J. Neural Eng., vol. 15,
no. 3, 2018, Art. no. 031005.

Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Comput., vol. 1, no. 4, pp. 541-551, Dec. 1989.
Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level
features for recognition,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., San Francisco, CA, USA, 2010, pp. 2559-2566.
X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proc. 14th Int. Conf. Artif. Intell. Stat., 2011, pp. 315-323.
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, “Deep
convolutional neural network for the automated detection and diag-
nosis of seizure using EEG signals,” Comput. Biol. Med., vol. 100,
pp. 270-278, Sep. 2018.

Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and
J. Faubert, “Deep learning-based electroencephalography analysis: A
systematic review,” J. Neural Eng., vol. 16, no. 5, 2019, Art. no. 051001.
R. T. Schirrmeister et al., “Deep learning with convolutional neu-
ral networks for EEG decoding and visualization,” Hum. Brain Map.,
vol. 38, no. 11, pp. 5391-5420, 2017.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

V.J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung,
and B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain—computer interfaces,” J. Neural Eng., vol. 15, no. 5,
2018, Art. no. 056013.

S. Haradal, H. Hayashi, and S. Uchida, “Biosignal data augmentation
based on generative adversarial networks,” in Proc. 40th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), 2018, pp. 368-371.

G. Ramponi, P. Protopapas, M. Brambilla, and R. Janssen, “T-CGAN:
Conditional generative adversarial network for data augmentation in
noisy time series with irregular sampling,” 2018. [Online]. Available:
arXiv:1811.08295.

Z. Zhang et al., “A novel deep learning approach with data aug-
mentation to classify motor imagery signals,” IEEE Access, vol. 7,
pp. 15945-15954, 2019.

J. Dinarés-Ferran, R. Ortner, C. Guger, and J. Solé-Casals, “A new
method to generate artificial frames using the empirical mode decompo-
sition for an EEG-based motor imagery BCI,” Front. Neurosci., vol. 12,
p- 308, May 2018.

D. Freer and G.-Z. Yang, “Data augmentation for self-paced motor
imagery classification with C-LSTM,” J. Neural Eng., vol. 17, no. 1,
2020, Art. no. 016041.

A. Rakshit, A. Konar, and A. K. Nagar, “A hybrid brain-computer
interface for closed-loop position control of a robot arm,” IEEE/CAA
J. Autom. Sinica, vol. 7, no. 5, pp. 1344-1360, Sep. 2020.

S. K. Hong, S. Park, M.-H. Ahn, and B.-K. Min, “Top-down and
bottom-up neurodynamic evidence in patients with tinnitus,” Hear. Res.,
vol. 342, pp. 86-100, Dec. 2016, doi: 10.1016/j.heares.2016.10.002.
B.-K. Min, S. Dihne, M.-H. Ahn, Y.-K. Noh, and K.-R. Miiller,
“Decoding of top-down cognitive processing for SSVEP-controlled
BMLI,” Sci. Rep., vol. 6, Nov. 2016, Art. no. 36267.

H. Cho, M. Ahn, S. Ahn, M. Kwon, and S. C. Jun, “EEG datasets for
motor imagery brain—computer interface,” GigaScience, vol. 6, no. 7,
pp. 1-8, 2017.

M. Z. Baig, N. Aslam, and H. P. H. Shum, “Filtering techniques for
channel selection in motor imagery EEG applications: A survey,” Artif.
Intell. Rev., vol. 53, no. 2, pp. 1207-1232, 2020.

P. Pudil, J. Novovicovd, and J. Kittler, “Floating search methods in fea-
ture selection,” Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119-1125,
1994.

D. Lakens, “Equivalence tests: A practical primer for ¢ tests, correlations,
and meta-analyses,” Soc. Psychol. Pers. Sci., vol. 8, no. 4, pp. 355-362,
May 2017, doi: 10.1177/1948550617697177.

C. C. Duncan-Johnson and E. Donchin, “On quantifying surprise:
The variation of event-related potentials with subjective probability,”
Psychophysiology, vol. 14, no. 5, pp. 456-467, 1977.

J. Polich, “Habituation of P300 from auditory stimuli,” Psychobiology,
vol. 17, no. 1, pp. 19-28, 1989.

Authorized licensed use limited to: Korea University. Downloaded on June 30,2023 at 08:59:17 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1016/j.tibtech.2017.03.008
http://dx.doi.org/10.1109/TCYB.2020.2968625
http://dx.doi.org/10.1016/j.heares.2016.10.002
http://dx.doi.org/10.1177/1948550617697177

8680

[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

R. Verleger and P. Berg, “The waltzing oddball,” Psychophysiology,
vol. 28, no. 4, pp. 468-477, 1991.

J. Polich, “Cognitive brain potentials,” Current Directions Psychol. Sci.,
vol. 2, no. 6, pp. 175-179, 1993.

E. Donchin and M. G. H. Coles, “Is the P300 component a manifestation
of context updating?” Behav. Brain Sci., vol. 11, no. 3, pp. 357427,
1988.

R. Johnson, “The amplitude of the P300 component of the event-related
potential: Review and synthesis,” in Advances in Psychophysiology,
vol. 3. Greenwich, CT, USA: JAI Press, 1988, pp. 69-137.

T. W. Picton, “The P300 wave of the human event-related poten-
tial,” J. Clin. Neurophysiol. Official Publ. Amer. Electroencephalograph.
Soc., vol. 9, no. 4, pp. 456479, Oct. 1992. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/ 1464675

J. Katayama and J. Polich, “Auditory and visual P300 topography from
a 3 stimulus paradigm,” Clin. Neurophysiol. Official J. Int. Federation
Clin. Neurophysiol., vol. 110, no. 3, pp. 463—468, Mar. 1999. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/10363770

X. Gao, D. Xu, M. Cheng, and S. Gao, “A BCl-based envi-
ronmental controller for the motion-disabled,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 11, no. 2, pp.137-140, Jun. 2003,
doi: 10.1109/TNSRE.2003.814449.

M. A. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. C. Masdeu,

“Human cerebral activation during steady-state visual-evoked
responses,” J. Neurosci. Official J. Soc. Neurosci., vol. 23,
no. 37, pp.11621-11627, Dec. 2003. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/14684864

S. Makeig, T. P. Jung, A. J. Bell, D. Ghahremani, and T. J. Sejnowski,
“Blind separation of auditory event-related brain responses into
independent components,” Proc. Nat. Acad. Sci. USA, vol. 94,
no. 20, pp. 10979-10984, Sep. 1997. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/9380745

H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, “Optimal spatial
filtering of single trial EEG during imagined hand movement,” /IEEE
Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441-446, Dec. 2000.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Process. Mag., vol. 25, no. 1, pp. 41-56, 2008.

G. H. Klem, “Artifacts,” in Current Practice of Clinical
Electroencephalography, J. S. Ebersole and T. A. Pedley, Eds.
Philadelphia, PA, USA: Lippincott Williams Wilkins, 2003,
pp. 271-287.

I. I. Goncharova, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw,
“EMG contamination of EEG: Spectral and topographical characteris-
tics,” Clin. Neurophysiol., vol. 114, no. 9, pp. 1580-1593, 2003.

S. Haufe et al., “On the interpretation of weight vectors of linear mod-
els in multivariate neuroimaging,” Neuroimage, vol. 87, pp. 96-110,
Feb. 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026-1034.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014. [Online]. Available: arXiv:1412.6980.

S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. Miiller, “Introduction
to machine learning for brain imaging,” Neurolmage, vol. 56, no. 2,
pp. 387-399, 2011.

FE. Chollet. (2019). Keras: The Python Deep Learning Library. 2015.
[Online]. Available: https://Keras.io

M. Abadi et al, “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” 2016. [Online]. Available:
arXiv:1603.04467.

D. J. Krusienski et al., “A comparison of classification techniques for
the P300 speller,” J. Neural Eng., vol. 3, no. 4, pp. 299-305, 2006.

B. Xu et al, “Motor imagery based continuous teleoperation robot
control with tactile feedback,” Electronics, vol. 9, no. 1, p. 174, 2020.
C. S. Kim, J. Sun, D. Liu, Q. Wang, and S. G. Paek, “Removal
of ocular artifacts using ICA and adaptive filter for motor imagery-
based BCL,” IEEE/CAA J. Autom. Sinica, early access, Jan. 25, 2017,
doi: 10.1109/JAS.2017.7510370.

R. Nédtinen, W. Teder, K. Alho, and J. Lavikainen, “Auditory atten-
tion and selective input modulation: A topographical ERP study,”
Neuroreport, vol. 3, no. 6, pp. 493-496, Jun. 1992. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pubmed/1391755

D. J. McFarland, L. A. Miner, T. M. Vaughan, and J. R. Wolpaw,
“Mu and beta rhythm topographies during motor imagery and actual
movements,” Brain Topogr., vol. 12, no. 3, pp. 177-186, 2000.

G. D. Schott, “Penfield’s homunculus: A note on cerebral cartography,”
J. Neurol. Neurosurg. Psychiatry, vol. 56, no. 4, pp. 329-333, 1993.
C. Liu, Y. Fu, J. Yang, X. Xiong, H. Sun, and Z. Yu, “Discrimination of
motor imagery patterns by electroencephalogram phase synchronization
combined with frequency band energy,” IEEE/CAA J. Autom. Sinica,
vol. 4, no. 3, pp. 551-557, Jul. 2017.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 9, SEPTEMBER 2022

[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]
[82]

(83]

A. Ghaemi, E. Rashedi, A. M. Pourrahimi, M. Kamandar, and
F. Rahdari, “Automatic channel selection in EEG signals for classifica-
tion of left or right hand movement in Brain Computer Interfaces using
improved binary gravitation search algorithm,” Biomed. Signal Process.
Control, vol. 33, pp. 109-118, Mar. 2017.

Y. Yang, L. Bloch, S. Chevallier, and J. Wiart, “Subject-specific chan-
nel selection using time information for motor imagery brain—computer
interfaces,” Cogn. Comput., vol. 8, no. 3, pp. 505-518, 2016.

E. Elsen, M. Dukhan, T. Gale, and K. Simonyan, “Fast sparse
ConvNets,” 2019. [Online]. Available: arXiv:1911.09723.

L. Xie, Z. Deng, P. Xu, K.-S. Choi, and S. Wang, “Generalized
hidden-mapping transductive transfer learning for recognition of epilep-
tic electroencephalogram signals,” IEEE Trans. Cybern., vol. 49, no. 6,
pp. 2200-2214, Jun. 2019.

J. Li, S. Qiu, Y.-Y. Shen, C.-L. Liu, and H. He, “Multisource trans-
fer learning for cross-subject EEG emotion recognition,” IEEE Trans.
Cybern., vol. 50, no. 7, pp. 3281-3293, Jul. 2020.

L. He, D. Hu, M. Wan, Y. Wen, K. M. Von Deneen, and M. Zhou,
“Common Bayesian network for classification of EEG-based multiclass
motor imagery BCL” IEEE Trans. Syst. Man, Cybern., Syst., vol. 46,
no. 6, pp. 843-854, Jun. 2016.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015, pp. 1-9.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las
Vegas, NV, USA, 2016, pp. 770-778.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu,
HI, USA, 2017, pp. 1251-1258.

M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convo-
lutional neural networks,” 2019. [Online]. Available: arXiv:1905.11946.
M. Arvaneh, C. Guan, K. K. Ang, and C. Quek, “Robust EEG channel
selection across sessions in brain-computer interface involving stroke
patients,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Brisbane,
QLD, Australia, 2012, pp. 1-6.

P. Stegman, C. S. Crawford, M. Andujar, A. Nijholt, and J. E. Gilbert,
“Brain—computer interface software: A review and discussion,” [EEE
Trans. Human-Mach. Syst., vol. 50, no. 2, pp. 101-115, Apr. 2020.

Hyun-Seok Kim received the B.S. degree in
electronics and electrical engineering from Pusan
National University, Busan, South Korea, in 2008,
and the Ph.D. degree in bioengineering from Seoul
National University, Seoul, South Korea, in 2018.
Since 2018, he has been working as a Postdoctoral
Research Fellow with the Institute for Brain and
Cognitive Engineering, Korea University, Seoul.
His research interests include machine learning,
computer-aided brain-disease diagnosis, biosignal
processing, and brain—computer interfaces.

Min-Hee Ahn (Student Member, IEEE) received the
master’s degree in computer engineering from Pusan
National University, Busan, South Korea, in 1998,
and the Ph.D. degree in brain and cognitive engi-
neering from Korea University, Seoul, South Korea,
in 2018, with a thesis on EEG source-level brain—
machine interfacing technology.

Since 2019, he has been working as a Research
Professor with the Laboratory of Brain and
Cognitive Science for Convergence Medicine,
College of Medicine, Hallym University, Anyang,

South Korea. His research interests include EEG analysis of tinnitus patients,
deep learning modeling of dizziness, and tCS-based neuromodulation for the
treatment of tinnitus.

Byoung-Kyong Min (Member, IEEE) received the
M.S. degree in neurobiology and physiology from
Northwestern University, Evanston, IL, USA, in
1998, and the Ph.D. degree in biological psychology
from Magdeburg University, Magdeburg, Germany,
in 2007.

He currently works as an Associate Professor with
the Department of Brain and Cognitive Engineering,
Korea University, Seoul, South Korea. He has com-
bined ultrasound sonication (or transcranial current
stimulation) with an EEG-based BMI to accomplish

a noninvasive human brain-to-brain interface. His research interests include the
spectral analysis of brain electrical activity (EEG/MEG) and cognitive BMIs.

Authorized licensed use limited to: Korea University. Downloaded on June 30,2023 at 08:59:17 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TNSRE.2003.814449
http://dx.doi.org/10.1109/JAS.2017.7510370


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


