
Trends
As new directions for BMIs, cognitive
BMI paradigms have various advan-
tages, challenges, and future potential
applications.

The ability to decode higher-order,
goal-oriented cognitive signals from
the prefrontal cortex provides new
possibilities for goal-directed BMI
technology that recognizes the user’s
intention.

As a complement to traditional
approaches, the exploitation of cogni-
tive signals may help overcome the
limitations of the existing state-of-
the-art BMI systems.

The direct decoding of goal-directed
intentions can intuitively control BMI
devices without goal-irrelevant, indir-
ect thinking (i.e., independent of the
final actuator or feedback modality).

Cognitive BMI approaches may help
rehabilitate or augment the cognitive
capabilities of patients with prefrontal
dysfunctions.
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Brain–machine interfaces (BMIs) enable humans to interact with devices by
modulating their brain signals. Despite impressive technological advance-
ments, several obstacles remain. Themost commonly used BMI control signals
are derived from the brain areas involved in primary sensory- or motor-related
processing. However, these signals only reflect a limited range of human
intentions. Therefore, additional sources of brain activity for controlling BMIs
need to be explored. In particular, higher-order cognitive brain signals, specifi-
cally those encoding goal-directed intentions, are natural candidates for
enlarging the repertoire of BMI control signals and making them more efficient
and intuitive. Thus, here, we identify the prefrontal brain area as a key target
region for future BMIs, given its involvement in higher-order, goal-oriented
cognitive processes.

Brain–Machine Interfaces: An Overview
BMIs, or brain–computer interfaces (BCIs), are a type of communication technology that links
humans and devices by decoding the user’s brain signals. This decoding process aims at
inferring, in real time, the user’s intention (e.g., move a prosthetic arm towards the right) based
on measured neural activity patterns. The inference is based on models of task-specific
patterns associated with different intentions (e.g., the differential activity in the left and right
motor-related areas of the brain can be used to decode intentions to move the left or right
hand). As BMI technology becomes more refined, its applicability in different environments
increases, ranging from clinical use to general consumer electronics. For example, BMIs have
been proposed for humans with motor deficits [1,2] as well as for able-bodied individuals with
regard to gaming, human–machine interactions, and driving [3–6]. BMIs are an advanced
biotechnology with widespread interest and numerous potential applications.

To generate appropriate BMI commands, the brain signals recorded frommultiple channels are
processed to extract meaningful features (Figure 1). In this context, features are processed
signals that optimally reflect specific characteristics of a designated mental task. For instance,
hand movements are known to induce spatiotemporal patterns at specific frequencies in the
motor cortex of the contralateral hemisphere. These features, which carry information about the
user’s intentions, are then sent to a decoder [7,8] that translates the current brain activity
pattern into commands to be performed by the device. Despite impressive progress in the field,
multiple outstanding challenges need to be overcome before these technologies can be widely
used in both clinical and consumer settings [9]. These challenges include improving the
reliability of decoding, and endowing the decoding engine with adaptive capabilities, which
will enable the BMI to be used long-term without explicit recalibration [10,11]. Improvements in
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Glossary
Electrocorticography (ECoG): an
intracranial measurement technique
in which electrical activity is recorded
directly from the surface of the
cerebral cortex. ECoG utilizes a
flexible, closely spaced subdural/
epidural grid or strip of electrodes to
record cortical activity. Compared
with non-invasive techniques, it
avoids signal distortion introduced by
the skull and intermediate tissue.
Hence, ECoG has both high
temporal (millisecond scale) and high
spatial (millimeter scale) resolution.
Since a craniotomy is required to
implant the electrode grid, ECoG is
generally only applied to clinical
patients.
Electroencephalography (EEG):
measures differences in the electric
potential representing the sum of the
excitatory and inhibitory postsynaptic
potentials from thousands or millions
of cortical neurons. EEG is typically
measured non-invasively using
multichannel arrays, conventionally
comprising 64–128 electrodes,
placed on the scalp.
Functional magnetic resonance
imaging (fMRI): a non-invasive
neuroimaging technique that uses
pulse sequences generated by a MRI
scanner. The most widely used fMRI
technique relies on the detection of
local hemoglobin-based changes in
blood-oxygen-level-dependent signal
contrast during neuronal activation.
This technique is characterized by
high spatial resolution, but low
temporal resolution owing to an
inherently delayed metabolic
response.
Local field potential (LFP): a
massed electrophysiological signal
obtained by the summed
extracellular electrical potential
recorded by intracranial electrodes.
The local electrical potential is
generated from multiple nearby
neurons within a small volume of
local neuron groups. The LFP signal
(frequency <500 Hz) captures a
multitude of neuronal processes,
such as synchronized synaptic
potentials and membrane currents.
Magnetoencephalography (MEG):
utilizes a superconducting quantum
interference device (SQUID) that is
extremely sensitive to the magnetic
disturbances created during neuronal
activity. This device can be used to
non-invasively detect the magnetic
the training paradigms and feedback [12], as well as the development of more robust and
wearable signal acquisition devices [13], will also be required.

Currently, the most critical impediment to using BMI technology outside of the laboratory is that
a large percentage of prospective end-users are unable to control the BMI because they
experience difficulties in learning to modulate their brain signals. In a study involving 24 end-
users, some with severe motor deficits, only 50% of the participants were able to control the
BMIs after less than 10 days of training [2]. As we review below, current BMI paradigms usually
decode primary sensory- or motor-related brain processes that, while critical for interaction,
only represent a subset of all the processes taking place during goal-oriented interactions. It
follows that BMIs could be greatly improved by enlarging the repertoire of brain signals to be
exploited. In particular, we propose that decoding cognition-related signals might produce
BMIs that are more robust and that could be controlled in a more intuitive manner compared
with existing paradigms.

BMI Recording Techniques and Paradigms
There are two types of recording technique used in BMIs: invasive and non-invasive. Invasive
techniques allow for the direct recording of high-quality brain electrical signals, despite the risk
of infection inherent to the surgical procedure. For example, the activity of individual neurons
can be recorded using microelectrode arrays implanted in the brain [multi-unit activity (MUA);
see Glossary] [14–17]. BMIs can also utilize the concerted activity of differentially sized neuronal
populations depending on the position of the electrodes, which can be implanted in the brain
[local field potential (LFP)] [18] or on the surface of the brain [electrocorticography (ECoG)]
[19].

Meanwhile, electroencephalography (EEG) [20] is a non-invasive technique that records the
synchronous activity of thousands of cortical neurons using electrodes placed on the scalp.
These invasive and non-invasive electrophysiological techniques have complementary advan-
tages. Thus, a combination of technologies may be necessary to achieve the ultimate goal of
long-term, reliable control of neuroprostheses [21]. Compared with EEG, other non-invasive
neuroimaging modalities are fraught with limitations. Magnetoencephalography (MEG)
devices are still too bulky to become a convenient BMI modality for everyday use. Moreover,
functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS)
result in slow BMI operation, owing to the inherent physiological latencies of the hemodynamic
responses that they measure.

In general, BMI paradigms are divided into two types: (i) externally stimulated paradigms that
decode brain responses to stimuli; and (ii) internally induced paradigms based on self-initiated
mental tasks [20,22]. An example of the first type of paradigm is the use of the P300 signal. This
component is a large positive modulation of the EEG signal, involving the frontal and parietal
areas, that peaks at approximately 300 ms after stimulus onset [23]. It is usually detected during
the categorical stimulus evaluation processes. P300-based BMIs [24,25] have high detectabil-
ity in most users and a relatively short latency, yielding fast communication. However, the P300
signal only reflects processes that are related to the presented stimulus, and does not carry
broader information about the user’s intention. Alternatively, several steady-state visual evoked
potential (SSVEP)-based BMIs have also been proposed [26,27]. The SSVEP is a physically
driven, brain electrical oscillatory response in the visual cortex at the exact same frequency of
an externally flickering stimulus. The highest performance in SSVEP-based BMIs is achieved
when users fixate on the flickering target, thereby being inappropriate for users who do not have
proper gaze control [27], or for long-term users due to eye fatigue [28].
field signals around the scalp (�50–
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500 fT) that are generated by neural
activity. Modern MEG devices
typically use helmet-shaped sensor
arrays of more than 300 SQUIDs that
are systematically arranged to cover
the entire scalp.
Multi-unit activity (MUA): in MUA,
extracellular electrical signals (in
terms of action potentials) are
recorded from multiple neurons
simultaneously. The MUA (frequency
>1000 Hz) portion of the recording
represents the spiking of local
neurons. To record from a local
network of neurons, microelectrodes
can be arranged in a grid-shaped
array, which can also be implanted
to obtain in vivo recordings.
Near-infrared spectroscopy
(NIRS): light in the near-infrared
spectrum (�630–1300 nm) can
penetrate the skull. This light can be
used to non-invasively investigate
cerebral metabolism. NIRS identifies
alterations in the intensity of
attenuated light at different
wavelengths that result from changes
in the oxyhemoglobin and
deoxyhemoglobin concentrations
during local neural activity.
P300: an evoked EEG response to
rare and relevant stimuli. It is one of
the most frequently used event-
related potentials for EEG-based
BMIs. The signal is characterized by
a positive EEG peak, usually
observed at approximately 300 ms
post stimulus during context-
updating processes. For instance, in
the classic matrix speller paradigm,
elements in the matrix (rows or
columns) are highlighted in a random
order. When the user focuses their
attention on a desired character, the
P300 component will be elicited
when the matrix elements containing
that character are presented
(Figure 1, main text).
Prefrontal cortex (PFC): a central
component in the brain network
supporting cognitive/attentional
control, sensory input, and motor
output. PFC is located anterior to the
(pre)motor cortex in the frontal lobes,
and can be divided into ventromedial
and dorsolateral regions, each of
which exhibits reciprocal connectivity
with different posterior and
subcortical brain areas. Anatomically
and functionally selective PFC
subregions have been associated
with distinct forms of control.
Slow cortical potentials (SCPs):
slow changes in the voltages
recorded over the sensorimotor
The second type of BMI paradigm relies on the volitional modulation of brain rhythms, in
particular those associated withmotor tasks. One such endogenous signal is the slow cortical
potential (SCP) [29]. For example, a slow, negative cortical potential (i.e., ‘readiness potential’)
reflecting internally generated intentions to move a limb can be observed in the corresponding
motor area before movement onset [30]. SCP-based BMIs were among the first BMIs to exploit
the correlates of human voluntary intentional movement [31]. Although SCPs can be decoded
on a single-trial basis, the decoding may take up to several seconds owing to the slow
dynamics of SCP. Besides SCPs, BMIs also exploit brain activity linked to the execution or
imagination of movements. Invasive approaches typically decode kinematic information (hand
position or velocity) from neuronal spikes or LFPs [14,16,17,19]. Non-invasive approaches
have extensively used motor-related spectral EEG modulations in the mu (8–13 Hz) and beta
(14–30 Hz) rhythms over the sensorimotor cortex as features for BMIs [20]. Compared with
approaches based on evoked responses, this type of approach usually requires longer training
periods and exhibits lower accuracy. Nevertheless, some users, including those with disabil-
ities, have achieved proper proficiency in BMI control skills (i.e., the ability to voluntarily
modulate the brain rhythms used by the decoder) after only a few training sessions [1], and
were able to demonstrate reliable control of these BMI devices [2,3,32–34].

Use of Goal-Oriented BMIs to Overcome Current Limitations
Previous studies on almost all types of BMI paradigm have demonstrated that participants,
including those with severe motor deficits [2,16,17,25,31,34,35], can successfully learn to use
a variety of brain-controlled devices [1]. Unfortunately, before BMI technology can be used
outside the laboratory, several limitations need to be overcome.

First, the number of brain signals currently used by BMIs is limited, and the signals are
principally derived from the primary sensorimotor cortex (i.e., activated by mental motor
imagery) or the posterior-parietal and occipital cortices (i.e., elicited by processing specific
stimuli). However, these signals only reflect a subset of the underlying processes that occur
during goal-oriented interactions. The sensorimotor or posterior-parietal/occipital signals used
by current BMIs are often linked to a specific characteristic of the chosen paradigm (e.g., the
stimulus modality or presentation rate). Thus, the decoding accuracy of the BMI may decrease
whenever the setup changes. Therefore, other brain activity features need to be harnessed as
BMI control signals, especially for patients with damage to the primary sensorimotor cortex, or
posterior-parietal/occipital cortices, or in cases where the signals derived from these regions
are not reliable. We posit that higher-order cognitive brain signals, which encode goal-directed
intentions instead of details on how to reach it, are natural candidates for enlarging the
repertoire of BMI control signals. Moreover, the usage of goal-directed signals may enable
us to achieve complex tasks intuitively, by delegating low-level details of their execution to
intelligent devices (i.e., shared control) [33] and, critically, may allow for generalization over
different operating conditions [36]. In the concept of ‘goal-directed intentional brain activity’,
there could be two types of goal-directed tasks. One type is dependent on the output device (e.
g., opening a window is specific to the window), and the other is independent of the output
device (e.g., intended movement trajectories can be generalized to a variety of devices).
Although the implementation of the goal-directed intention will depend on each case, the
analysis of brain signals to recognize such an intention is similar.

Indeed, a BMI can function in two different ways; it can control a process or it can select a goal
[37,38]. A BMI can control the details of the process to accomplish the user’s intention. For
instance, it can specify each step of the movement sequence that brings the output device to
the goal. To do this effectively, the brain should provide information of all the complex high-
speed interactions with the device as the movement proceeds. Alternatively, in the goal-
selection approach, the BMI simply communicates the users’ goal, and the movement is
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cortex, which precede actual or
imagined movement or cognitive
tasks. It has been suggested that
positive SCPs accompany mental
inhibition, whereas negative SCPs
are associated with mental
preparation. Early SCP-based BMIs
required users to learn how to
voluntarily modulate these rhythms
through operant conditioning, which
required long training periods. More
recently, the focus has shifted
towards exploiting the functional role
of movement-related SCPs. Thus,
naturally elicited SCPs are being
used to decode the onset of self-
paced movement intentions of both
able-bodied subjects and patients
with stroke.
accomplished by neuroprosthetic controllers [37]. Given that the first approach requires
effective management of the complex high-speed interactions between the BMI output and
the sensory inputs, it places greater mental demands on the BMI than does goal selection. It
has been previously reported that goal selection shows better BMI performance (in accuracy,
speed, and information transfer rate) than does process control [38].

Additionally, BMI operational protocols often require users to perform mental functions that are
not directly related to the task goal. For example, to move a bar on the monitor towards the
right, users are typically trained to imagine a movement of the right hand, rather than to directly
think of moving the bar to the right. By contrast, the goal-directed strategy has the potential to
provide more natural control. As with any goal-selection approach, a goal-directed BMI
decodes a subject’s intention from cortical signals and delegates actual control of the process
to the downstream apparatus [37]. Decoding goal-directed intentional brain activity could
produce BMI operational strategies that aremore intuitive, and ones that subjectsmight be able
to acquire more easily.

Advances in Cognitive BMI Technology
Higher cognitive functions, such as planning to achieve goals and evaluating the course of
actions, are independent of the low-level details of how actions are executed, and of the
sensory modalities conveying the status of the task under consideration. This is one of the
fundamental differences between the proposed cognitive BMI and other sensorimotor and
externally triggered sensory paradigms. A second difference is the loci of the corresponding
neural signals. While classical BMI paradigms record signals from the frontocentral and parieto-
occipital areas (Figure 1), cognitive BMIs should exploit neural signals from more diverse areas,
ranging from rather specific parietal and frontal areas to complex prefrontal networks. Table 1
Sensorimotor

P300

SSVEP

Cogni�ve BMI

EEG acquis�on Feature extrac�on and
classifica�on

Real-�me feedback

Control external
devices

Figure 1. Electroencephalography (EEG)-based Brain–Machine Interface (BMI) Technology and its Categorical Paradigms. This schematic flow is a
simplified conceptual structure of BMI technology. To obtain a control signal for BMIs, EEG signals are recorded from the relevant cortical areas [i.e., occipital steady-
state visual evoked potentials (SSVEPs), noted as ‘O’; parietal P300, noted as ‘P’; central sensorimotor activity, noted as ‘C’; and frontal and prefrontal cognitive
rhythms, noted as ‘F’]. These frontal and prefrontal cognitive rhythms are newly proposed control signals for cognitive BMIs. Then, machine-learning techniques find
pertinent features in the recorded EEG, which are sent to a classifier to determine the user’s intention in real time. The BMI control signals cause a change in the
environment (e.g., movement of a wheelchair or change in the position of a prosthetic arm), and this information can be used to provide real-time feedback to BMI users
so that they can learn to better modulate their EEG activity and convey bettermental commands. Eventually, this feedback could be exploited to adapt the parameters of
the classifier in an ongoing closed-loop BMI system.
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Table 1. Comparative Advantages and Disadvantages of Prefrontal and Sensorimotor BMIs

Prefrontal BMI Sensorimotor BMI

Advantages

� Uses goal-directed brain signals
� Uses intuitive BMI commands; no need for arbitrary

mental tasks (indirect thinking)
� Allows combinations of BMI signals to be used across

frontal and other brain regions
� Potential concomitant therapeutic or rehabilitative effects

for cognitive disorders
� Spare utility when primary sensorimotor cortices

are damaged

� Relatively well-established research field
� Less elaborate signal processing is required
� Relatively prompt signal processing for

communication
� Use of sensorimotor approaches for motor

rehabilitation

Disadvantages

� Newly developed research field
� Exploits signals from a relatively complicated frontal

cognitive network compared with the primary
sensorimotor cortices

� Elaborate signal processing is required to extract the
spatially accurate cognitive information from raw
brain signals

� Limited number of BMI control signals
� Often relies on arbitrary mental tasks

(goal-irrelevant thinking), leading users to adopt
non-intuitive control strategies

� Impasse when primary sensorimotor cortices are
damaged
lists several advantages and disadvantages of the new cognitive BMI approach (Box 1) and of
the existing sensorimotor BMI approach.

To date, while a large number of sensorimotor BMI studies have been conducted, only a few
have focused on cognitive BMIs, although recently there has been growing attention to this
approach. As shown in Table 2, studies investigating cognitive BMIs have used various
recording modalities and targeted diverse areas, decoding different kinds of high-order,
goal-directed intentions. One example of a cognitive BMI is decoding the goal of upcoming
movements from neural activity that occurs before movement onset. For this purpose, BMIs
can exploit signals based on EEG readiness potentials [39], ECoG recordings in the dorsolateral
prefrontal cortex (DLPFC) [40], and MUA in the parietal reach region (PRR) of the posterior
parietal cortex (PPC) [15]. For instance, Musallam and colleagues [15] showed that the
expected value of reward could be decoded from MUA in the PRR, an area involved in
transforming sensory inputs into action plans, whose activity exhibits directional selectivity.
Aflalo and colleagues [35] found that PRR activity provided reliable information about reaching
the goals and trajectories of a human with tetraplegia. Importantly, they demonstrated that
decoding was cue independent and that some goal-selective neurons showed no bias with
respect to which arm the subject imagined using. Other studies have targeted the DLPFC or the
PFC in general. Vansteensel and colleagues [41] reported that the position of a computer
cursor could be moved to a target by modulating the gamma ECoG activity in the left DLPFC,
while Ryun and colleagues [42] observed that two types of movement (hand grasping and
elbow flexion) could be predicted before movement onset by using prefrontal ECoG signals.
Collectively, these invasive studies revealed the neurophysiological underpinnings of cognitive
BMIs, and reinforced the feasibility of cognitive BMI technology.

In parallel, there have been increasing attempts to develop non-invasive cognitive BMIs in
humans using EEG [43,44] and NIRS techniques [45]. For instance, Wang and Makeig [44]
investigated whether non-invasive EEG signals recorded from the human PPC can be used to
decode intended movement direction. They recorded whole-head EEG with a delayed sac-
cade-or-reach task and found direction-related modulation of event-related potentials in the
PPC. The decoding of these components yielded an average accuracy of 80.25% in binary
Trends in Biotechnology, July 2017, Vol. 35, No. 7 589



Table 2. Overview of Cognitive BMI Studiesa

Signals Participants Experimental protocol Performance Refs

Invasive Approaches

Frontal and Prefrontal Cortex

Subdural ECoG in left
DLPFC

Humans with
intractable
epilepsy (N = 3)

1D Computer-cursor movement
control (two tasks: serial
subtractions versus rest); several
�4-min runs (28–29 trials/run)

Online decoding;
average correct hits:
78.3% (up to 91%)

[41]

MUA in medial-frontal
area

Humans with
intractable
epilepsy
(N = 12)

Onset of upcoming self-paced
movements (Libet protocol [78])

Offline cross-validation
accuracy >80% (30%of
data used as a testing
set)

[79]

Subdural ECoG in PFC,
premotor,
supplementary, and
primary sensory-motor
areas

Humans with
intractable
epilepsy (N = 6)

Decoding self-paced movement
types: grasping of elbow flexion
(68–138 trials)

Offline decoding
accuracy: 74% (fivefold
cross-validation)

[42]

Parietal Cortex

MUA in PRR Monkeys
(N = 3)

Decoding-cued reaching goal
location; 250 and 275 trials (four
and six targets, respectively)

Online decoding
accuracy: 40.8% and
31.3% (four and six
targets, respectively)

[15]

MUA in PRR and PPC Monkeys
(N = 2)

Cued reaching task. Up to 25 daily
sessions for offline training
followed by up to 17 days of brain
control sessions

Offline trajectory
reconstruction:
coefficient of
determination (R2) up to
0.61 (average across
days).
Online reaching
success rate: up to
85.2% after 10 training
days

[80]

MUA in left PPC Human with
tetraplegia
(N = 1)

Goal and trajectory of imagined
movements; online decoding
used to control robot arm
trajectories

Online accuracy of goal
decoding: >90%

[35]

Non-Invasive Approaches

Frontal and Prefrontal Cortex

Error-related EEG
potentials (frontocentral
areas)

Healthy
volunteers, no
BMI
experience
(N = 2)

Simultaneous motor-imagery and
error-potential decoding. 1D
cursor control

Online recognition rate
of correct single trials:
84.7%

[81]

Error-related EEG
potentials (frontocentral
areas)

Healthy
volunteers
(N = 12)

Monitoring of 1D and 2D
movements of an external device
(cursor control, simulated, and
real robot arm); approximately
350 trials per subject

Online decoding
accuracy: 72.5–74.3%

[36]

Motor-related EEG
cortical potentials

Healthy
controls (ME:
N = 15; MI:
N = 10)
Stroke patients
(AM: N = 5)

ME/MI of self-paced ankle
movements: ME, AM: three test
runs of 5 min duration each MI:
two test runs of 5 min duration
each

Offline decoding.
Average TPR: [229_TD$DIFF]healthy:
ME: 82.5% and MI:
64.5%; stroke: AM:
55%

[82]

Motor-related EEG
cortical potentials

Healthy
volunteers
(N = 9)

ME/MI of self-paced ankle
movements; 15–20 trials for each
condition

Online average TPR:
ME: 84%, MI: 75%.

[83]
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Table 2. (continued)

Signals Participants Experimental protocol Performance Refs

Detection latency: ME:
235 ms; MI: 396 ms

Slow cortical potentials
in frontocentral areas

Healthy
volunteers
(N = 4)

Self-paced reaching and grasping
tasks (400 trials per subject)

Offline detection of
grasping intention:
70%. Decoding latency:
62 ms before grasping
onset

[84]

NIRS signals in PFC Healthy
volunteers
(N = 21)

Computer-cursor movement
control (fivefold cross-validation of
50 trials)

Offline decoding
accuracy: 65.5%

[45]

Parietal Cortex

Movement-related
temporoparietal EEG
signals

Healthy
volunteers
(N = 4)

Cued delayed saccade/reaching
task; three possible targets (900
trials overall)

Offline decoding
accuracy: 80.3%
(tenfold cross-
validation)

[44]

Movement-related EEG
slow cortical potentials
in frontal and parietal
areas

Healthy
controls
(N = 2); stroke
patients (N = 3)

Cued self-paced reaching task;
four possible targets (80 trials/
target)

Offline decoding
accuracy (fivefold
cross-validation):
healthy: 76%; stroke:
47% (chance: 25%)

[39]

aAbbreviations: AM, attempted movement; ME, movement execution; MI, movement imagination; N, number of parti-
cipants; TPR, true positive rate.
single-trial EEG classification (left versus right). These results indicate that, in the PPC, neuronal
activity associated with different movement directions can be distinguished even in a non-
invasive manner and, thus, non-invasive cognitive BMIs are feasible.

Prefrontal Activity as a Source of Cognitive Signals
Using goal-directed intention recognition may help advance BMI technology (Figure 2), and
activity in the PFC appears to be an ideal candidate for achieving this aim. The PFC is central to
executive control (i.e., cognitive/attentional control of behavior), and the dynamic integration of
sensory input, internal states, and motor output [46]. These higher-order cognitive functions,
including planning and evaluating ongoing actions, are independent of action-execution
processes, and of the sensory modalities that provide feedback on the current task [47].
Consequently, their correlates in the PFC remain robust across different tasks and feedback
modalities. This is illustrated in the case of error-related potentials and reaching information
(generated in the anterior cingulate and parietal cortices, respectively), shown to be consistent
across different experimental paradigms. We posit that, because neural activity related to
higher-order cognitive processes is a natural and intuitive neural correlate of goal-directed
intentions, the decoding of these signals may lead to the seamless and efficient operation of
complex brain-controlled devices (such as neuroprostheses and avatars), and to break-
throughs in communication and environmental control speeds.

The PFC comprises those parts of the frontal lobes that are located anterior to the motor and
premotor cortices, and anatomically comprises the dorso-/ventrolateral PFC, dorso-/ventrome-
dial PFC, and anterior PFC [48]. The DLPFC has reciprocal connections with brain regions for
motor control (basal ganglia, premotor cortex, and supplementary motor cortex), performance
monitoring (cingulate cortex), and nonemotional sensory processing (parietal/occipital associa-
tion areas). Meanwhile, the ventromedial PFC has reciprocal connections with brain regions for
emotional processing (amygdala), memory (hippocampal formation), and higher-order sensory
processing (inferior temporal visual association areas) [49]. The existence of dissociable PFC
Trends in Biotechnology, July 2017, Vol. 35, No. 7 591



Box 1. Neural Correlates of Cognitive Processes

Anticipation and Movement Preparation

Slow activity modulations in cortical motor areas have been found to occur in the moments preceding self-paced
voluntary movements, known as the readiness potential or motor-related cortical potential [29,78]. A similar slow
negative EEG deflection (contingent negative variation) appears in central areas when subjects anticipate future events
predicted by a warning stimulus [85]. Recently, the idea of decoding these slow cortical potentials (SCPs) has gained
traction as a means of predicting a subject’s upcoming actions. Indeed, SCPs have been used to predict the onset and
direction of self-paced upper- and lower-limb movements using both invasive [15,35,40,79] and non-invasive tech-
niques [39,82,83,86]. BMIs that use SCPs to predict the onset and direction of limb movements differ from those that
rely on SCP modulation [29], because the former utilize the naturally elicited SCP and its functional correlates, while the
latter require subjects to learn a new arbitrary skill via neurofeedback, which may necessitate long training periods.

Error-Related Potentials

Performance monitoring is crucial for learning and adapting behavior. Multiple studies have identified brain responses in
the medial frontal cortex that are elicited by monitoring the performance of action-related processes [87,88]. These
signals are evoked by the subject’s own errors, as well as by unexpected feedback or errors during BMI interaction [43].
Modulation of neural activity in the theta frequency band (4–8 Hz) has been shown to correlate with error awareness,
and this activity appears to originate in the anterior cingulate cortex. Importantly for BMI applications, these signals can
be consistently measured using scalp EEG and reliably decoded on a single-trial basis [36,43,81].

Correlates of Goal-Directed Movement

Typically, BMIs have focused on decoding the kinematics of ongoing movements (via invasive approaches), or on
imagining repetitive movements (via non-invasive systems). An alternative is to decode the goal of an upcoming
movement. Invasive recordings in humans and nonhuman primates have shown that activity in the parietal cortex
enables movement goals to be decoded, including reaching direction and grasping type [15,35]. Early evidence
suggests that it is also possible to decode direction and grasping intention using non-invasive techniques [39,84]. Since
this approach focuses on decoding high-level intentions, it can be combined with shared-control approaches, where
the intelligent prosthesis deals with the details of the execution of the action [33]. Such an approach has been shown to
improve performance while reducing the user’s cognitive workload [89].
subdivisions implies differently designated functions. For example, the dorsal PFC is associated
with generating goals based on recent events,while the ventral PFC is related to generating goals
based on sensory contexts [50]. Such topographic and functional subdivisions may also corre-
spond to specific executive functions that could be utilized for cognition-based BMI control. For
instance, the DLPFC has roles in motor control and performance monitoring in working memory
[49], including implementingprogramstoachievean intendedgoalandmonitoring the resultsofan
action to adjust behavior [51]. Thus, decoding DLPFC activity has the potential to become a core
cognitivecomponentofBMIs thatwouldexploit informationon themonitoringandmanipulationof
online behavior. The work by Vansteensel and colleagues [41] provides a preliminary example of
this type of cognitive BMI.

The role of executive control in working memory, with some functional differences, character-
izes the entire lateral PFC [49,52]. By contrast, the anterior PFC enables the online evaluation of
a pending task according to the outcomes of an ongoing task. Additionally, the anterior PFC is a
crucial component of the executive system, which is involved in decision-making processes
[53]. These two areas could provide independent control signals for cognitive BMIs, although
this would require the use of invasive techniques (ECoG, LFP, or MUA) or the estimation of
intracranial sources from scalp EEG (see Figure 3 and the ‘Challenges for Future Cognitive
BMIs’ section below).

Neuroplasticity is one of the key components of BMI because users should learn to modulate
their brainwaves voluntarily via appropriate feedback. Such feedback drives the brain reward
system, which can promote the generation of particular neural patterns [1,54]. This is the
rationale of BMI-mediated motor neurorehabilitation [55,56]. Similarly, cognitive BCIs exploiting
592 Trends in Biotechnology, July 2017, Vol. 35, No. 7



(A) (B)Motor imagery-based BMI Prefrontal cogni�ve BMI

Indirect thinking Direct imagina�on

Figure 2. Comparative Overview between Typical Motor-Imagery and Prefrontal Cognitive Brain–Machine Interface (BMI) Paradigms. (A) In motor
imagery-based BMIs, the user has to imaginemoving a hand to open thewindow, but thismotor imagery of a hand is not directly related to the user’s goal of opening the
window. (B) In prefrontal cognitive BMIs, when the user intuitively imagines opening the window, the window will be opened. Therefore, indirect thinking is no longer
required, and direct imagination of goal-directed intentions will likely be sufficient to control BMI devices.
PFC activity could reinforce targeted patterns in cortical networks, including prefrontal areas. It
is noteworthy that the prefrontal area is a critical component of the reward system [57].
Therefore, the approach proposed here can open new avenues in the field of rehabilitation,
particularly for patients with PFC-related cognitive disorders. Indeed, since BMI techniques can
support neurological treatment as it facilitates neuroplasticity [58,59], including in the prefrontal
area [60,61], the cognitive PFC-based BMI approach may contribute to the recovery of
impaired prefrontal neural networks. Potential end-users include individuals with autism,
Asperger’s syndrome, dementia, attention-deficit/hyperactivity disorder (ADHD), and depres-
sion. In terms of neural rehabilitation, cognitive BMIs could decode goal-directed intentions
from the PFC, and provide a beneficial feedback loop for restoring impaired networks (Figure 3).
For example, autism [62] and ADHD [63] are the most frequently observed disorders with
prefrontal deficiencies, and neurofeedback treatment for these disorders provides a significant
therapeutic effect [64–66]. Therefore, cognitive PFC-based BMI training could be used to
promote patterns of prefrontal activity in patients with autism or ADHD that would resemble
those of healthy controls. Thus, further studies are needed to evaluate the potential of cognitive
BMI techniques to significantly enhance the functioning of prefrontal brain region, and, conse-
quently, contribute to the rehabilitation of patients with cognitive deficits due to prefrontal
dysfunctions.

Similarly, cognitive PFC-based BMIs could be used to improve cognitive capabilities in healthy
individuals. This point is especially important given our aging society. Experiments in older adults
have shown that improvements in cognitive control obtained via video game-based trainingwere
correlated with increases of EEG theta activity (4–8 Hz) around the frontal midline brain area [67].
This type of activity is typically observed during mental calculation, concentration, short-term
memory, and heightened attention [68]. We hypothesize that BMI systems aimed at actively
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Figure 3. An Example of a Prefrontal Cognitive Brain–Machine Interface (BMI). Using a prefrontal cognitive BMI system, the estimated prefrontal cortical
activity becomes strongly activated when the position of a robot arm is controlled by goal-directed mental processes. Such prefrontal cognitive activity, directly
reflecting the goal-directed intention, is used to enhance the ongoing task performance with direct real-time feedback. Through repeated feedback, the cognitive BMI
technique can contribute to the rehabilitation (e.g., a beneficial feedback loop for restoring impaired cortical networks) of patients with cognitive deficits owing to
prefrontal dysfunctions. The direct imagination of goal-directed intentions can intuitively control BMI devices without goal-irrelevant, indirect thinking. Such frontal
cognitive activity can be identified, for instance, according to different spatial patterns in scalp-level electroencephalogram (EEG) activity, cortical-level EEG activity
(estimated by source localization of the scalp-level EEG activity), or their causal connectivity.
promoting such PFC patterns may contribute to improvements in cognitive control, potentially
boosting the effectsobtained throughvideogame-based training. In addition, recent studieshave
shown that meditation-based cognitive training [69–71] facilitates BMI use. For example, manip-
ulating attention via mindfulness meditation induction improves P300-based BMI performance
[69]. Furthermore, participants experiencing mind-body awareness training demonstrated an
enhanced ability to control the BMI system, and improved significantly more over time compared
with controls [70]. These observations provide insight into the enhancement of cognitive BMI
learning and performance by incorporating mind–body awareness training.

Challenges for Future Cognitive BMIs
As discussed, PFC-based cognitive approaches appear to be ideal for generating goal-
directed BMI commands. Nevertheless, several challenges must be overcome before such
approaches can be used ubiquitously. The first and most critical challenge is to demonstrate
the stability and reliability of cognitive BMIs across a range of goal-directed signals. In this
respect, it remains to be identified which and how many of such cognitive brain signals can be
decoded.
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Outstanding Questions
Which cognition-related signals from
the PFC could be accurately decoded
to permit brain–machine interactions?

How important is ‘context’ for inter-
preting cognitive signals into BMI
goals, and how do we acquire this
context?

At a philosophical level, how can ‘free
will’ be guaranteed when a machine
may directly decode users’ intentions?

What are the best methods for devel-
oping stable and reliable cognitive
BMIs that can utilize a range of goal-
directed signals, thereby allowing
users to intuitively convey their
intentions?

How can cognitive signals be inte-
grated into the BMI loop to promote
intuitive control based on the user’s
intended goal, independent of the
end-actuators and feedback
modalities?

Which methods best characterize the
correlations of goal-directed behavior
in subjects with cognitive deficits?

Which design mechanisms for closed-
loop interactions best contribute to the
rehabilitation or augmentation of cog-
nitive capabilities?
A second but related challenge concerns the necessary spatial resolution for deploying
effective cognitive BMIs. Indeed, decoding goal-directed cognitive activity may be problematic
because multiple mental processes activate the same areas, which may result in decreased
decoding performance. Hence, spatial resolution is a limitation of EEG-based BMIs, especially
when decoding signals originate from areas rich in subfunctions, such as the PFC. As
discussed, the existence of dissociable PFC subdivisions (i.e., the anterior, dorsolateral,
and ventrolateral PFC) supports the diversity of PFC control, but the spatial specificity of these
regions has not been precisely mapped. In consequence, the development of signal process-
ing techniques will be essential. Specifically, advanced source-localization methods for non-
invasive approaches will be required to extract spatially accurate features that yield effective
BMI control signals [72,73]. It is also likely that frequency-specific modulations can be individ-
ually observed in the PFC subdivisions, which may help disentangle the spatial specificity
problem. In addition, these frequency-specific processes modulate the interactions between
different brain areas. For instance, connectivity pattern analysis has been shown to convey
information about error-monitoring processes in a BMI paradigm on a single-trial basis [74].
Similarly, cognitive control enhancement in older adults has been shown to correlate with
increased long-range theta coherence between frontal and posterior brain areas [67]. There-
fore, the use of connectivity-related features in BMIs may help disentangle specific cognitive
processes [74–76]. Progress in computing power and parallel computing techniques makes
extraction of the source and connectivity features of goal-oriented cognitive processes in real
time possible [77].

Concluding Remarks and Future Perspectives
As it has been shown, it is now possible to recognize different goal-directed cognitive signals
from the frontal and prefrontal cortices at a variety of levels, including the microscopic (MUA),
mesoscopic (LFP), andmacroscopic (EEG) levels. Using these different methods will allow us to
exploit the individual advantages of each modality and to uncover new cognitive signals, either
separately or in combination. As detailed here, the decoding of cognitive correlates of goal-
directed tasks may lead to more robust and reliable BMIs. Moreover, since cognitive BMI
techniques have the potential to enhance the functioning of prefrontal brain regions, they could
contribute to the rehabilitation of patients with cognitive deficits related to prefrontal dysfunc-
tions. Thus, a challenge for the future is to design cognitive BMIs that are appropriate for
treating specific prefrontal pathologies (see Outstanding Questions). The assistive and thera-
peutic applications of prefrontal cognitive BMIs should be explored further with the aim of
improving the quality of life of individuals with sensorimotor or cognitive impairments.
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