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Abstract— As the brain is a unique biological system that
reflects the subtle distinctions in the mental attributes of individ-
ual humans, electroencephalographic (EEG) signals have been
regarded as one of the most promising and potent biometric
signals for discriminating between individuals. However, existing
EEG-based user-recognition methods present only a limited range
of individual distinctions. In this paper, we propose a novel system
of decoding cognitive EEG signals for individual identification
with high accuracy. Specifically, we investigate the feasibility
of our system, which can recognize an individual based on
the discriminative patterns of source-level causal connectivity
among brain regions, estimated from scalp-level EEG signals.
The EEG signals were produced by a steady-state visual evoked
potential-inducing grid-shaped top–down paradigm. This system
can, in principle, use top–down cognitive features analyzed
by individuals’ differently characterized neurodynamic causal
connectivities. In this paper, we achieved a maximal accuracy
of 98.60% on average in 20 subjects, for whom we estimated
causal connectivity in 16 brain regions using 5-s intervals of
EEG signals. Our system shows promising initial results toward
building a practical identification technology able to recognize
individuals by means of brain neurodynamics.

Index Terms— Electroencephalography, causality, cognitive
system, identification, support vector machine, top-down
processing.

I. INTRODUCTION

TRADITIONAL identification methods that utilize pass-
words and iris, fingerprint, or face scans [1]–[3] are

vulnerable to forged input. Moreover, most provide neither
reliable nor efficient identification performance (e.g., a facial
recognition system can be spoofed by a photo of a genuine
user), and the number of identification systems currently in
use is limited. For the purpose of automatic user recog-
nition, there is growing interest in electronic identification
using biological signals, such as those from an electroen-
cephalogram (EEG), electromyogram (EMG), or electrocar-
diogram (ECG). Among these techniques, EEG signals have
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been regarded as one of the most promising and potent
bio-signals for discriminating between individuals [4]–[10].
For instance, identification based on either parametric spec-
tral analysis of EEG signals (with identification accuracy
up to 84%) [8] or autoregressive models for single EEG
traces (with identification accuracy over 80%) [5] has pre-
viously been studied. EEG signals have also been used
to decode visual stimuli with high accuracy [11], [12].
Although Palaniappan and Mandic achieved an identity veri-
fication rate up to 98.56% using EEG signals [13], there are
only a handful of studies that have used EEG-based biometrics.
It is worth noting that the brain is considered to be the ultimate
target for efficient individual biometric characteristics because
it is a unique biological system that reflects subtle distinctions
in individual mental attributes.

EEG has been shown to be a versatile and practical tool
for neurotechnological applications because of its excellent
temporal resolution (approximately 1 ms), portability, and
non-invasiveness [14]–[16]. Among EEG-based paradigms,
the steady-state visual evoked potential (SSVEP) paradigm
provides very accurate and high spectral resolution infor-
mation (usually less than 0.1 Hz) [17] at high transfer
rates [18], [19]. An SSVEP is a physically driven electrical
oscillatory response in the brain, induced by the repetitive
presentation of a visual stimulus [17]; occipital SSVEPs can
be detected at the same flicker frequency (and harmonics) as
the flickering stimulus that has been presented. An SSVEP-
inducing paradigm has many applications in brain-signal oper-
ating systems and neurotechnology [20]–[22].

Given this situation, Min et al. [12] recently proposed a
new SSVEP-based top-down paradigm, as shown in Fig. 1 and
Supplementary Video Clip 1. Using an SSVEP-inducing grid-
shaped flickering line array, individually characteristic top-
down cognitive features could be extracted from individuals’
EEG signals for the purpose of automatic user identification.
Unlike bottom-up processing, which is physically driven by
external properties, top-down processing efficiently reflects
individuals’ different and subjective mental neurodynamics.
Accordingly, their characteristics are unique for each indi-
vidual and thus can be used efficiently as a discriminative
and exclusive brain fingerprint. Hence, this study proposes
a novel individual identification technique using human top-
down EEG signals.

II. MATERIALS AND METHODS

A. Participants and Procedures

Twenty healthy native Korean speakers (10 males and
10 females; age 25.7 (mean) ± 4.6 (s.t.d.) years) partici-
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Fig. 1. Schematic of an SSVEP-inducing grid-shaped line array. (a) Grid-
shaped line array consisting of 3 rows (R1–R3) and 3 columns (C1–C3)
of individually flickering lines. (b) Examples of an attended flickering line
composite (in red) when a participant pays particular attention to the Korean

letters , , , , , and while looking at the flickering grid-shaped
line array [12].

pated in this study. The study was conducted in accordance
with the ethical guidelines established by the Institutional
Review Board of Korea University and the Declaration of
Helsinki (World Medical Association, 2013). Participants had
normal or corrected-to-normal vision and provided informed
consent prior to the study.

In order to present a mentally generated letter within the
participant’s restricted visual angle to evoke a correspond-
ing SSVEP, a 6 cm × 6 cm grid-shaped line array was
designed (see Fig. 1 and Supplementary Video Clip 1). In this
array, 3 rows (R1–R3 in Fig. 1a) and 3 columns (C1–C3 in
Fig. 1a) of lines with a mean luminance of 136.26 cd/m2

were illuminated on a black monitor (Full HD LED
27-in., S27B550, Samsung, Seoul, Korea). Each line had a
thickness of 6 mm and the distance between two adjacent
rows or columns was 1 cm. This grid-shaped line array was
within a visual angle of 6.4° at a distance of 65 cm [23],
falling on the retinal region centered at the fovea (the most
sensitive portion of the retina) without macroscopic eye
movement. In order to generate individual SSVEPs based on
each flickering line, each row and column had an individual
flickering frequency between 5 and 7.5 Hz (see Fig. 1a);
these frequencies have been shown to be effective in inducing
SSVEPs in humans [24], [25]. A sampled sinusoidal stim-
ulation method [26] was used to implement visual stimulus
presentation on the LED screen for eliciting SSVEP responses.

The underlying concept behind decoding a participant’s
thoughts using SSVEPs induced by our grid-shaped line array
is as follows. When a participant pays attention to a subset of
flickering lines, whose combination represents the shape of a
letter or symbol, we expect that the frequencies corresponding
to those lines are detected as dominant SSVEP features.
The frequencies driving the SSVEP signals can be analyzed
using a pattern recognition algorithm (detailed in the Analysis
section) and decoded to determine the participant’s identity
based on his or her own target signal patterns. The experiment
comprises four blocks with a short break in between; each
block includes 60 trials. In each block, six predefined Korean
letters ( , , , , , and ) were cued 10 times each for
participants to conceive of by a 1-s auditory cue presented

500 ms before the onset of a flickering grid-shaped line
array; that is, the participants were instructed to simultaneously
attend to two lines that jointly compose a letter. The auditory
cues for each letter stimulus were presented in a random
order. In order to form , R1 and C3 in Fig. 1a should be
simultaneously attended. Similarly, R3 and C1 for , R3 and
C2 for , R1 and C2 for , R2 and C1 for , and R2 and
C3 for . Inter-trial intervals ranged from 1000 ms to 1500 ms,
centered at 1250 ms. After a 1-s auditory cue (an analog
instruction sound) pronouncing the Korean letter to which a
participant was required to attend, and a subsequent 500 ms
buffer period, the grid-shaped line array was presented for
5 s. During this time, the participant was asked to focus
his or her attention on the instructed combination of the two
corresponding lines among the six flickering lines.

B. EEG Acquisition

EEG signals were measured using a BrainAmp DC ampli-
fier (Brain Products, Germany) with 32 Ag/AgCl electrodes in
an actiCAP (Brain Products, Germany) in accordance with the
international 10-10 system. An electrode was placed on the tip
of the nose as reference, and a ground electrode was placed at
electrode AFz. Electrode impedances were maintained below
5 k� prior to data acquisition. The EEG was recorded at
500 Hz. Eye movement activity was monitored with an electro-
oculogram (EOG) electrode placed sub-orbitally on the left
side, and vertical and horizontal electro-ocular activity was
computed using two pairs of electrodes placed vertically and
horizontally with respect to both eyes (i.e., Fp1 and EOG for
the vertical EOG, F7 and F8 for the horizontal EOG). EOG
activity was corrected offline using independent component
analysis (ICA) [27]. The EEG was segmented from 500 ms
pre-stimulus to 5000 ms post-stimulus for each trial. EEG
epochs of amplitude greater than +100 μV or less than
−100 μV and included a gradient greater than 50 μV/ms were
automatically excluded. For each EEG epoch, the segment was
analyzed in the time window from stimulus onset (i.e., time
zero) to 5 s post-stimulus. For the same purpose, time windows
of 1–4 s post-stimulus and 2–3 s post-stimulus were taken for
3-s and 1-s EEG epochs, respectively.

C. Granger Causal Analysis

The spatiotemporal distribution of brain activity and net-
work behavior provide significant psychophysiological infor-
mation and it is important to image functional connectivity
to understand brain function [28], [29]. As such, Granger
causality [30] analysis was used to find essential neurodynamic
networks for the grid-shaped top-down SSVEP paradigm.
Granger causality analysis is commonly used to estimate
directional causal interactions between electrophysiological
signals [29]. In particular, directed transfer function (DTF)
is a computational method to measure causality among an
arbitrary number of signals [31], [32]. To overcome possible
misleading by bivariate measures (e.g., coherence analysis)
when applied to multivariate systems [33], DTF has been
proposed as a method to extract directional information flow
between brain structures [34]. DTF can be regarded as one



MIN et al.: INDIVIDUAL IDENTIFICATION USING COGNITIVE EEG NEURODYNAMICS 2161

type of multivariate Granger causality and can be used to
handle multichannel signals derived from the coefficients of
a multivariate autoregressive (MVAR) model that fits to the
data [30]. The ARfit package [35] was used to compute DTF
for the estimation of MVAR models. These computations were
conducted using the eConnectome software [29], [36], [37],
and the resultant functional connectivity was mapped for the
experimental condition. The eConnectome software enabled
the estimation of cortical source imaging and subsequent
connectivity analysis of cortical source activity.

Computing time can be reduced by decreasing the number
of regions of interest (ROIs), which is vital for the real-time
application of this technology. In this regard, we analyzed
identification accuracy by using causal connectivities as a
function of the number of ROIs in Section III-A. Based
on the most pronounced cortical activity estimated by the
eConnectome software, 4, 8, 12, and 16 ROIs were bilaterally
selected among 82 Brodmann areas (BA) to map directional
connectivity. That is, the four ROIs were the most activated
regions (BA 24L(left)/R(right) and 27L/R) during the task.
Along with these 4 ROIs, the 8 ROIs additionally included
the next four most activated regions (BA 24L/R, 27L/R,
29L/R, and 32L/R). Similarly, the 12 ROIs (BA 24L/R, 27L/R,
29L/R, 32L/R, 40L/R, and 41L/R) and the 16 ROIs (BA 9L/R,
24L/R, 27L/R, 29L/R, 32L/R, 40L/R, 41L/R, and 42L/R) were
sequentially selected to compare their decoding performance
as a function of the number of ROIs.

Regarding DTF analysis, and thus the number of features,
there are two additional factors that should be considered for
a practical use of our system. One is the EEG epoch size;
and the other is the number of letter stimuli. We predefined
three steps of EEG epoch size (1 s, 3 s, and 5 s), and
individual identification accuracy was compared as the EEG
epoch size increased from 1 s to 5 s. Similarly, accuracy was
also analyzed as the number of letter stimuli increased; 1 ( )
→ 2 ( and ) → 3 ( , , and ) → 4 ( , , , and )
→ 5 ( , , , , and ) → 6 ( , , , , , and ).

EEG signals in the frequency range from 5 Hz to 14 Hz
were used for feature extraction. This frequency range includes
the stimulus flickering frequencies along with the sum of the
letter-corresponding combination frequencies. Source wave-
forms at all the selected ROIs were estimated and DTF analysis
showed directional information flow across sources. The DTF
function yields arbitrary values that represent functional con-
nectivity, which are still subject to statistical assessments of
their significance [29]. Because the DTF function has a highly
nonlinear relation to the time series data from which it is
derived, a non-parametric statistical test method based on sur-
rogate data is used to evaluate the significance of the estimated
connectivity measures [38]. In this method, we transformed the
original time series to the Fourier space, kept the magnitudes
of the Fourier coefficients unchanged, but randomly and inde-
pendently shuffled the phases of the Fourier coefficients. The
surrogate data in the Fourier space were then transformed back
to the time domain. This process of phase shuffling preserves
the spectral structure of the time series, which is suited for
DTF analysis because DTF measures frequency-specific causal
interactions. After shuffling, the connectivity estimation was

Fig. 2. Grand-averaged topographies of directional cortical activity (a) and
the directional flow of brain connectivity (b). Information flow across the 16
× 16 ROIs ( j-to-i direction: i , j = 1 for BA 9L, 2 for BA 9R, 3 for BA
24L, 4 for BA 24R, 5 for BA 27L, 6 for BA 27R, 7 for BA 29L, 8 for
BA 29R, 9 for BA 32L, 10 for BA 32R, 11 for BA 40L, 12 for BA 40R,
13 for BA 41L, 14 for BA 41R, 15 for BA 42L, and 16 for BA 42R) by
Granger causality analysis. Using the estimated time courses of the 16 ROIs,
DTF analysis identified directional information flow across cortical sources.
Color-scaled directional arrows link two causally connected ROIs when their
Granger causality is statistically significant (i.e., p < 0.05). Color-scaled
arrows in the cortical connectivity image and the pixels in the information
flow map represent the degree of causal connectivity (ranging from 0 to 1).
The topographical view is from the vertex, with the nasion at the top right of
the image.

applied to the surrogate data. We repeated the shuffling and
connectivity estimation procedures 1000 times for each set
of source time series, creating an empirical distribution of
the DTF values under the null hypothesis that no causal
connectivity exists ( p < 0.05) [38].

Finally, for example, we obtained 16 × 16 trial-based
information flow maps for the 16 ROIs condition (see Fig. 2)
for each subject and extracted individual features from each
stimulus category, which were then used for the identification
of individuals.

D. Classifier Training and Individual Identification

After DTF analysis, we transformed the information flow
matrix into a vector x, which became the input to a classifier
that identifies each individual. Specifically, if we consider
the number R of ROIs, there are R2 elements in the DTF
matrix. Since we had six different letter stimuli, there were
six different DTF matrices. We constructed a feature vector
x by concatenating all the elements of the six DTF matrices.
Thus, the dimensions of a feature vector x are 6 × R2.

For individual identification, we utilized a linear support
vector machine (SVM) that performs strongly in many appli-
cations [39], [40]. However, since an SVM is basically a
binary classifier, it is not directly applicable to our individual
identification system (i.e., a multi-class classification task).
Typically, there are two different approaches for multi-class
classification with a binary classifier: one-against-rest and
one-against-one. The one-against-rest method builds K binary
classifiers, where K is the total number of classes under
consideration, with each binary classifier fk (k = 1, …, K )
built between the kth class and K -1 other classes; the one-
against-one method builds K (K -1)/2 binary classifiers, with
each binary classifier fkj (k, j = 1, . . . , K ) built between
the kth class and the j th class (k �= j ). For reasons of
computational efficiency and training costs, we chose to use
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Fig. 3. Overview of the individual identification system using causal brain
connectivity patterns. For example, if the causal connectivity pattern of new
EEG signals is classified as S03’s causal connectivity based on the calibrated
data, the system identifies the individual as S03.

the one-against-one approach, which classifies a test sample x
with the following rule:

k̂ = argmax
k

∑

j

fkj (X) (1)

Figure 3 shows the overall configuration of the individual
identification system using causal brain connectivity patterns.
To validate the effectiveness of the proposed individual iden-
tification system, we used a five-fold cross-validation strategy.
Specifically, we first randomly partitioned each subject’s trials
into five subsets such that each subset contained an equal
number of samples, i.e., 8 trials per fold. We then used four
out of the five subsets for training in a calibration phase and
the remaining subset for testing in a prediction phase (Fig. 3),
which was thus repeated five times. We recruited 20 partici-
pants and obtained 40 trials from each subject for each six-
stimulus category. Therefore, with five-fold cross-validation
in performance evaluation, we used 640 (20 participants × 32
trials/subject) and 160 (20 participants × 8 trials/subject) trials
for training and testing, respectively.

To optimize the SVM parameter C , we utilized a nested
five-fold cross-validation technique. The labeled training EEG
samples from outer cross-validation were further partitioned
into five subsets. In an inner cross-validation of the five
subsets, four subsets were used for training and the remaining
subset was used for validation by changing the value of C ,
whose space was defined with ten values evenly spaced
between 2−5 and 24. After five repetitions (i.e., one validation
per subset), we chose the value of C that achieved the maximal
average performance and used this value to train the SVM with
the outer cross-validation training samples. The LIBSVM tool-
box1 was used for SVM learning and classification. To avoid
potential bias that could be incurred during data partitioning,
we repeated this process ten times. The performances reported
in Section III are the averages across all experiments.

The decoded signals were evaluated to determine whether
the individuals’ causal brain connectivity patterns, induced

1Available at http://www.csie.ntu.edu.tw/cjlin/libsvm/.

Fig. 4. Identification performance changes as a function of the number of
ROIs and EEG epoch size when all six letter stimuli were analyzed. Error
bars represent standard deviations.

by the set of attended flickering lines, could be successfully
differentiated; i.e., whether the users of this system were
correctly identified. The rates of successful identification of
the test data were compared across the different numbers of
ROIs, EEG epoch sizes, and numbers of letter stimuli in order
to evaluate the decoding performance. In order to statistically
examine whether decoding accuracies were significantly dif-
ferent across the experimental conditions, two-tailed paired-
sample t-tests were performed. A false discovery rate (FDR) of
q = 0.01 was used to correct for multiple comparisons, which
is known to be commonly acceptable for this purpose [41].
All analyses were performed using MATLAB (ver. R2015b,
MathWorks, USA) or SPSS Statistics (ver. 22, IBM, USA).

III. RESULTS

A. Number of ROIs and Identification Performance

We achieved a maximal accuracy of 98.60 ± 1.00% with
the 16-ROI, 5-s EEG epoch, 6-letter stimulus condition,
an improvement of 1.89% over the 12-ROI condition. As plot-
ted in Fig. 4, individual identification decoding accuracies
ranged from 61.30% (4 ROIs) to 98.60% (16 ROIs) in the
5-s EEG epoch, 6-letter stimulus case. Accuracy gradually
increased along with the number of ROIs and EEG epoch size.
As shown in Table I, decoding accuracy when using 12 ROIs
was not significantly different from that when using 16 ROIs
across all the EEG epoch sizes: 1-s EEG epoch (12 ROIs,
88.65%; 16 ROIs, 93.30%; t19 = −2.53, non-significant [n.s.],
FDR corrected), 3-s EEG epoch (12 ROIs, 95.10%; 16 ROIs,
97.85%; t19 = −3.18, n.s., FDR corrected) and 5-s EEG
epoch (12 ROIs, 96.65%; 16 ROIs, 98.60%; t19 = −2.10,
n.s., FDR corrected).

B. EEG Epoch Size and Identification Performance

Figure 5 demonstrates that decoding accuracies ranged from
93.30% (1-s EEG epoch) to 98.60% (5-s EEG epoch) when
all six letter stimuli and 16 ROIs were taken into account.
Accuracy gradually improved as the number of ROIs and
EEG epoch size increased. It is noteworthy that decoding
accuracies by 3-s EEG epochs were not significantly different
from those by 5-s EEG epochs across all ROI conditions (see
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TABLE I

STATISTICAL COMPARISONS OF IDENTIFICATION ACCURACY ACROSS
DIFFERENT NUMBERS OF ROIS (4, 8, 12, AND 16) IN DIFFERENT

EEG EPOCH SIZES (1, 3, AND 5 s) AVERAGED OVER ALL SIX

LETTER STIMULI. MULTIPLE COMPARISONS WERE COR-
RECTED BY FALSE DISCOVERY RATE (FDR)

Fig. 5. Identification performance changes as a function of EEG epoch size
and the number of ROIs when all six letter stimuli were analyzed. Error bars
represent standard deviations.

TABLE II

STATISTICAL COMPARISONS OF IDENTIFICATION ACCURACY ACROSS

DIFFERENT EEG EPOCH SIZES (1, 3, AND 5 s) IN DIFFERENT NUMBERS

OF ROIs AVERAGED OVER ALL SIX LETTER STIMULI. MULTI-
PLE COMPARISONS WERE CORRECTED BY FALSE DISCOVERY

RATE (FDR)

Table II): 4 ROIs (3-s epoch, 55.05%; 5-s epoch, 61.30%;
t19 = −2.47, n.s., FDR corrected), 8 ROIs (3-s epoch, 86.75%;
5-s epoch, 89.45%; t19 = −2.08, n.s., FDR corrected),
12 ROIs (3-s epoch, 95.10%; 5-s epoch, 96.65%; t19 = −2.06,

Fig. 6. Identification performance changes as a function of the number of
stimuli and EEG epoch size when 16 ROIs were analyzed. Error bars represent
standard deviations.

n.s., FDR corrected), and 16 ROIs (3-s epoch, 97.85%; 5-s
epoch, 98.60%; t19 = −1.58, n.s., FDR corrected). As shown
in Fig. 5, accuracy tends to saturate with more than 12 ROIs;
that is, small improvements occur with 16 ROIs compared to
12 ROIs.

C. Number of Stimuli and Identification Performance

Decoding accuracy ranged from 80.20% (with a single stim-
ulus) to 98.60% (with all six stimuli) in the 5-s EEG epoch,
16-ROI case. Accuracy gradually increased with the number
of letter stimuli and EEG epoch size (Fig. 6). It is noteworthy
that even with three letter stimuli ( , , and ), considerable
decoding accuracy (95.30%) was achieved, which was not
significantly different from the accuracy (97.65%) of the case
using five letter stimuli (t19 = −3.03, n.s., FDR corrected)
in the 5-s EEG epoch, 16-ROI condition (see Table III). This
small number of letter stimuli reduces classification time.

D. Practicability Optimization

Although further detailed information by more experi-
mental parameters leads to higher system accuracy, this is
not economically optimal for a practical system. As shown
in Tables 1 and 2, accuracies obtained using 12 ROIs and
3-s EEG epochs are statistically comparable to those obtained
using 16 ROIs and 5-s EEG epochs, respectively. Based on
these observations, we optimized our system by setting the
number of ROIs and EEG epoch size to 12 ROIs and 3 s,
respectively.

In addition, taking all six letter stimuli into account for
individual identification inevitably increases the number of
features and the computing time required for DTF analysis.
In this regard, it may be reasonable to sacrifice a small
improvement in identification accuracy in order to make our
system more practical over a given time domain, as previously
mentioned.

In order to empirically estimate overall processing time, the
processing times for DTF computation and individual classifi-
cation by SVM were measured in the 12-ROI case, as shown
in Fig. 7. Computing times were positively proportional to the
number of letter stimuli and EEG epoch size.
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TABLE III

STATISTICAL COMPARISONS OF IDENTIFICATION ACCURACY ACROSS THE
DIFFERENT NUMBERS OF LETTER STIMULI IN DIFFERENT EEG EPOCH

SIZES AVERAGED OVER 16 ROIs. MULTIPLE COMPARISONS WERE

CORRECTED BY FALSE DISCOVERY RATE (FDR)

Fig. 7. Change in computing time of individual identification as a function
of the number of letter stimuli and EEG epoch size when using 12 ROIs.
Error bars represent standard deviations.

Table IV demonstrates the trade-off between identifica-
tion accuracy and computing time as a function of the
number of letter stimuli under the 12-ROI, 3-s EEG epoch

TABLE IV

IDENTIFICATION ACCURACY AND COMPUTING TIME (MEAN ± s.t.d.) AS A
FUNCTION OF THE NUMBER OF LETTER STIMULI WITH 12 ROIs AND

A 3-s EEG EPOCH SIZE

condition. For instance, three letter stimuli yielded relatively
good performance, with an accuracy of 86.39% and a rea-
sonable computing time of 9.13 s on average. Consistently,
Section III-C shows that only the three-letter stimulus set
produced statistically comparable accuracy to the five-letter
stimulus set. To this end, we optimized our system to use
12 ROIs, 3-s EEG epochs, and three letter stimuli, respectively.

IV. DISCUSSION

Using causal neurodynamic connectivity based on top-
down cognitive EEG features, we obtained considerably higher
decoding accuracy for the identification of individuals (98.60%
on average in the 16-ROI, 5-s EEG epoch condition) compared
to previous studies using EEG-based individual-identification
approaches. This study proposes a novel method for decoding
individual identity using a newly proposed SSVEP-based
cognitive EEG paradigm [12]. Although the total time needed
to complete this technique can still be improved, it has
shown promising results, building toward future identification
technology that is resistant to forgery due to the authentic and
unique characteristics of individual neurodynamics.

Among all the experimental parameter combinations,
we observed that the parameter set with the 5-s EEG epoch,
16 ROIs and all six stimuli led to maximal identification
performance. This is because greater temporal and spatial
information regarding all the stimuli would improve decoding
performance. For instance, since we analyzed EEG attributes
in a frequency domain (5–14 Hz) to compute brain causal
brain connectivity, a reasonable time duration is a prerequisite
for obtaining EEG spectral components for each frequency
band. That is, a reasonable period that includes a sufficient
number of intact wavelengths of these frequencies should be
taken into consideration for further analyses. In addition, more
ROIs allow more differentiated patterns of causal brain con-
nectivity (i.e., DTF matrices), which consequently increases
the number of discriminative features, leading to better and
easier identification.
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In addition to the number of letter stimuli and EEG
epoch size, both contributing to the length of stimulus dura-
tion, the computation of causal brain connectivity is another
substantial factor that modulates processing time for this
identification system. As described in Section III-D, although
results under the 3-s EEG epoch, 12-ROI parameter com-
bination (an economically optimal condition) did not yield
maximal individual identification accuracy; the accuracy rate
resulting from this condition using three letter stimuli
(86.39%) is relatively acceptable, as both the computing
(9.13 s) and presentation times (15 s = 3 letters × 5 s for
each letter) are regarded as reasonable for practical application
(Table IV). When more parameters were included for identi-
fication performance, the system consequently needed more
computing time, which is unsuitable for practical systems,
despite further improvements in accuracy. Thus, since there
is a trade-off between accuracy and computing time (see
Table IV), the above parameter set was proposed as an optimal
candidate for practical usage of this system.

It is noteworthy that the most active parts of selected
ROIs (BA 24 and 27) in this system were subcortical
top-down brain regions. BA 24 is the anterior cingulate
cortex (ACC), which executes top-down inhibitory control
[42], [43], conflict monitoring [44]–[46], and attention [47].
BA 27 is the hippocampal/parahippocampal region associ-
ated with short-term memory processing [48]. Because causal
connectivity generated predominantly from these areas was
prominently activated during the performance of this task,
neurophysiological evidence supports that the present tech-
nology involves ACC/hippocampal-based top-down cognitive
processing. Although La Rocca et al. [49] have already
used EEG spectral coherence connectivity for human brain
distinctiveness, the authors employed a simple eye open/closed
resting condition, contrasted with the higher-order top-down
processing condition in this study. Moreover, simple coherence
analysis cannot provide directional causality among ROIs,
whereas our study has explicitly shown directional causal-
ity from the ACC and hippocampus to other brain regions.
Neurodynamic indices particularly based on such subcortical
brain regions as BA 24 and 27 in the present study are
also advantageous for patients whose sensorimotor cortical
areas are damaged, which reduces the reliability of typical
brain signals derived therein for EEG-mediated individual
identification.

Other ROIs involved in this study also have significant
roles in top-down processing. For instance, BA 32 is the
dorsal ACC, the ventral part of which is BA 24. BA 9 is the
dorsolateral prefrontal cortex (DLPFC), which is essential for
higher-order cognitive control functions and promotes active
manipulation and monitoring of sensorimotor information
mechanisms in working memory [50]. The DLPFC is also
involved in representing cognitive action and goal-directed
behaviors [51], [52]. BA 29 is the granular retrolimbic area,
which is near the visual areas and the hippocampal memory
system. BA 40 is Wernicke’s area, which is the key region for
language comprehension. BA 41 closely corresponds to the
primary auditory cortex. Processing of the conceived letter in
the current study may evoke auditory or linguistic activation.

This identification system essentially accesses and uses
intentional top-down cognitive systems, allowing for the explo-
ration of potent EEG-based identification technology that can
decode a variety of human intentions. This system can lead to
an expanded repertoire of brain-fingerprint techniques and thus
open new EEG-based authentication and security technolo-
gies. For example, multi-factor authentication mechanisms are
required to enforce strong authentication based on biometrics
and identifiers of another nature. The identification scheme of
this study can serve as one of the robust and effective biometric
components of multi-factor authentication. As compared with
physically-driven bottom-up processing, top-down processing
better reflects individuals’ characteristic mental states. Accord-
ingly, it can be efficiently used as a precise and potent brain
fingerprint.

This technology can be applied to forensics and security
devices in everyday life. For instance, if the SSVEP-inducing
grid-shaped flickering line array is embedded in a small
display on a door lock, the door will open only when it
recognizes a designated master’s causal EEG connectivity
patterns. Alternatively, a TV remote controller can recognize
its owner by analyzing a neurodynamic EEG fingerprint when
the system is embedded in a display on its remote control.
Further refinement by adding more rows and columns to
the grid-shaped line array (which enables the decoding of a
larger set of letter-like shapes) would, in principle, allow this
technology to accomplish more advanced discrimination tasks
consistently and reliably.

However, this system requires further improvement in sub-
sequent studies. The constraints of this study are as follows:
First, since a larger sample size would result in a higher statis-
tical power, the present study with a sample size of 20 warrants
further investigation. Thus, the present observations should
be interpreted carefully while considering this statistical lim-
itation. Second, decoding time should still be improved.
Currently, our system needs 9.13 s of computing time for
individual identification in the 12-ROI, 3-s EEG epoch, 3-letter
stimulus condition. By using further differentiable SSVEP-
inducing stimuli and parallel processing, computing time will
be further decreased, resulting in a more practical EEG-based
identification technology. Third, the flicker stimulation can
produce visual fatigue or discomfort [53]. However, this can be
overcome using high-frequency SSVEP technology [54], [55].
Flickering at high-frequencies produces much less visual
fatigue than at lower frequencies [56], [57], making SSVEP-
based identification more comfortable and stable [56]. Fourth,
although the present study used wet EEG electrodes, dry
electrodes can be employed for wearable and convenient
use in practical situations. Lastly, as the grid-shaped SSVEP
technique is currently implemented using the Korean letter
system, a study in which it is transferred to other languages
is required to ensure its versatility.

V. CONCLUSION

The proposed neurodynamic connectivity-based user-
recognition system may become a potent future technology
for individual identification. Unlike most previous studies
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in SSVEP-based neurotechnology, which inevitably require
macroscopic ocular movements [19], the present top-down
SSVEP paradigm uses a highly compact stimulus presentation.
Therefore, our novel EEG-based forensics and security para-
digm provides a gaze-shift-free identification technique. This
novel approach could, in principle, use top-down cognitive
features analyzed by individuals’ characteristic neurodynamic
causal connectivity—a technique that may ultimately become
useful for future forensics and security techniques. This
study demonstrates that human top-down EEG signals provide
promising and potent individual identification features that
enable practical and versatile user-recognition applications.
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