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ABSTRACT Mental workload is defined as the proportion of the information processing capability used
to perform a task. High cognitive load requires additional resources to process information; this demand
for additional resources may reduce the processing efficiency and performance. Therefore, the technique of
workload estimation can ensure a proper working environment to promote the working efficiency of each
person. In this paper, we propose a three-dimensional convolutional neural network (3D CNN) employing
a multilevel feature fusion algorithm for mental workload estimation using electroencephalogram (EEG)
signals. The 1D EEG signals are converted to 3D EEG images to enable the 3D CNN to learn the spectral
and spatial information over the scalp. The multilevel feature fusion framework integrates local and global
neuronal activities by workload tasks in the 3D CNN algorithm. Multilevel features are extracted in each
layer of the 3D convolution operation and each multilevel feature is multiplied by a weighting factor, which
determines the importance of the feature. The weighting factor is adaptively estimated for each EEG image
by a backpropagation process. Furthermore, we generate subframes from each EEG image and propose a
temporal attention technique based on the long short-term memory model (LSTM) to extract a significant
subframe at each multilevel feature that is strongly correlated with task difficulty. To verify the performance
of our network, we performed the Sternberg task to measure the mental workload of the participant, which
was classified according to its difficulty as low or high workload condition. We showed that the difficulty
of the workload was well designed, which was reflected in the behavior of the participant. Our network is
trained on this dataset and the accuracy of our network is 90.8 %, which is better than that of conventional
algorithms. We also evaluated our method using the public EEG dataset and achieved 93.9 % accuracy.

INDEX TERMS Convolutional neural network, electroencephalogram (EEG), feature fusion, mental
workload, working memory.

I. INTRODUCTION
Mental workload is defined as the proportion of information
processing capability that is utilized when a person is per-
forming a task [1]. Studies on mental workload have aimed to
develop methods that efficiently use the limited information
processing capacity of humans [2], [3]. For instance, when a
person acquires new skills, low workload can cause wastage
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of mental resources. Therefore, providing higher difficulty of
learning can enhance the speed of learning. In contrast, high
work intensity generates mental overload and reduces the
efficiency and performance of the task. In many cases, high
workload can cause serious accidents owing to failure of the
task or poor decision-making [3]. Monitoring the workload
is essential to assist people in enhancing their work perfor-
mance or learning speed by properly adjusting the difficulty
of the workload. It can also improve workers’ well-being and
safety at work by measuring excessive workload in real-time.
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Therefore, workload estimation has been widely studied in
various areas such as air vehicle task [4], text reading [5],
and multitasking environments [6].

Because cognitive tasks are processed by neuronal activ-
ities, brain signals can be effectively used to estimate the
workload. Brain signals can be measured by several methods
including electroencephalography (EEG), functional near-
infrared spectroscopy (fNIR), and functional magnetic res-
onance imaging (fMRI). Among the methods, EEG has been
mostly used in studies on working memory because the EEG
signals have a sensitive indicator to distinguish the working
memory process. EEG has high temporal resolution, which
can be applied to real-time workload estimation. In addition,
portable EEG devices allow EEG signals to be easily acquired
during a task and can be easily adapted to real-world
applications.

Several neuroscience researchers have found that the spa-
tiotemporal dynamics of the EEG power spectrum over the
scalp are strongly related to the mental workload [7]–[10].
Some studies have reported that the power of the theta
(4-8 Hz) oscillations increases in the frontal lobe as the
workload increases [7], [9]; the alpha (8-12 Hz) power is
linked to idling [11] and cortical inhibition [12]; and the beta
(12-30 Hz) power is increased in proportion to the work-
load [7]. The findings imply that the structure of the power
spectrum over the frequency bands (theta, alpha, and beta)
is closely related to different levels of the workload. Based
on these findings, early studies extracted the spectral features
related to workload estimation and attempted to classify the
workload as ‘‘low workload’’ and ‘‘high workload’’ through
classical machine learning algorithms such as support vec-
tor machine (SVM) or linear discriminant analysis (LDA)
[13]–[15]. However, SVM and LDA require handcrafted fea-
tures representing the spatial and spectral information that
greatly influence the classification performance.

In recent years, deep learning has emerged as one of the
most powerful techniques for EEG decoding of brain sig-
nals in applications such as brain-computer interface, seizure
detection, and workload estimation [16]–[23]. Deep learning
methods can extract high-level representations from a large
dataset and their performance has been verified in various
areas including speech recognition, image classification, and
video recognition [24]–[27]. In particular, convolutional neu-
ral network (CNN) is the most widely used deep learning
structure that is analogous to the organization of neurons
in the visual cortex. The CNN is capable of capturing the
spatial and temporal dependencies in an image through the
relevant filters and efficiently extracting high-level features
with a small number of parameters. In addition, CNN is easily
applicable to any dimension of data (one-dimensional (1D):
speech data, two-dimensional (2D): image data, and three-
dimensional (3D): video data) by adjusting the dimension of
the convolution operation.

Therefore, CNN has been widely utilized in EEG decod-
ing applications because EEG signals are characterized by
spectral, spatial, and temporal information. For example, 1D

CNN is used to extract the temporal information from EEG
signals [20]. On the other hand, some studies have converted
1D EEG signals to 2D EEG images (EEG topographic map)
to extract the spatial information from multi-channel EEG
data over the scalp [16], [23]. In addition, 3D CNN has
been utilized to simultaneously extract spectral and spatial
information from spectral topographic maps across all fre-
quencies [18], [21]. Recent studies on EEG decoding appli-
cations have shown that 3D CNN structures have superior
performance in EEG decoding applications [18], [21], [28].

Most of the CNN algorithms perform classification using
only the deep feature extracted from the last convolutional
layer. The deep feature certainly contains essential high-
level structure information for classification, but a recent
study suggests that low-level features that are extracted from
the intermediate convolutional layers contain abundant local
structure information [29]. Because these local features are
useful in improving the deep learning performance, multi-
level feature fusion methods have been proposed for various
applications [22], [29]–[32]. For example, in [31], multilevel
features were aggregated for a music auto-tagging problem
to utilize different time-scale features. In remote sensing
scene classification, a feature fusion framework is used to
aggregate multilayer features to build a more discrimina-
tive feature [29]. Further, in object detection, a multilevel
feature containing semantics and fine details is utilized to
detect a salient object [32]. However, few studies have devel-
oped CNN algorithms exploiting multilevel features for EEG
decoding applications, despite the well-known fact that the
human brain functions through both local and global neuronal
connections [33].

In neuroscience, there is a general consensus that the
human brain maintains two properties—functional segrega-
tion and integration [33], [34]. Functional segregation refers
to locally specialized information processing of the brain
and integration refers to the global integration of information
across the entire brain. To extract spatial information of the
spectral power represented by integration and segregation,
utilizing both low-level and high-level features is indispens-
able in the CNN structure: low-level features are useful for
extracting the local features of the brain’s segregation, and
high-level features are analogous to the integration of the
brain’s global activities. Recently, the 3D CNN structure with
a multilevel fusion method was proposed for EEG decoding
applications [22], but the determination of the importance of
each low-level feature for effective integration was not fully
investigated.

Moreover, according to the previous study [35], processes
of information manipulation and holding information can be
separated during the working memory task. Because these
two processes have different spectral features, the spectral
power changes over time during the transition from infor-
mation manipulation to holding information. In particular,
the spectral feature that is strongly correlated with task dif-
ficulty appears in an individually different time when testing
ten participants [36]. Therefore, it is important to capture the
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time interval that has the significant spectral feature related
with the task difficulty.

This study proposes a newmultilevel feature fusionmethod
for EEG based workload estimation. We recorded the EEG
signals from 62 participants during a Sternberg working
memory task consisting of an easy and a hard task. Multi-
channel EEG data were transformed into a spectral topo-
graphical map containing spectral and spatial information.
Then, we constructed a 3DCNNbased feature fusion network
to learn the spatial and spectral representations using low-
level and high-level features. Low-level features, which are
extracted from low-level convolutional layers, represent the
local activities of the brain, and high-level features can extract
the global activities of the brain. Therefore, we aggregated
both low-level and high-level features and proposed a fusion
stream with a weighting factor, which determined the impor-
tance of each feature. The weighting factor was optimally
adjusted according to the EEG image by the proposed net-
work. In addition, to extract the time interval that has the
spectral feature representing the task difficulty, we propose
a temporal attention method based on the long short-term
memory model (LSTM) [37]. The experimental results show
that the proposedmultilevel feature fusionmodel with tempo-
ral attention improves the performance of conventional CNN
models and outperforms the classical classifiers based on
handcrafted features. In summary, the main contributions of
our paper are following as:
• We propose a 3D CNN based multilevel feature fusion
architecture to extract the low-level and high-level fea-
tures which represent the brain’s segregation and inte-
gration, respectively.

• We propose a learning structure for the weighting factor
that indicates the importance of each multilevel feature
in the proposed multilevel feature fusion architecture.
This weighting factor is adaptively adjusted to each 3D
EEG image and leads to superior performance compared
to the fixed weighting factor.

• We propose a LSTM based temporal attention technique
to pick out a highly correlated time segment with the task
difficulty.

In this paper, we represent a vector by a lowercase boldface
letter and a matrix by an uppercase boldface letter. The
remainder of this paper is organized as follows. Section II
describes our experimental setup and data collection to study
the mental workload in working memory tasks. Section III
proposes the multilevel feature fusion method based on the
3D CNN structure. The performance of the proposed method
and performance comparisons with conventional algorithms
are presented in Section IV. Finally, Section V provides the
conclusion.

II. MATERIALS
A. EXPERIMENTAL SETUP
Participants were instructed to perform the Sternberg task,
which has been widely used for studying mental workload,
especially in working memory [38], [39]. Participants were

FIGURE 1. Framework of the Sternberg task.

required to memorize letter-number combined stimuli during
an encoding phase, where a stimuli consisted of a combina-
tion of an alphabet (A to Z) and a number (0 to 9), such as
T3, A1, and G7. The difficulty of the workload was deter-
mined by the memory set size. In present study, the low and
high workload conditions were composed of three and seven
stimuli, respectively.

Fig. 1 shows the experimental protocol for the low work-
load, where three stimuli are displayed sequentially. Each
stimulus was presented for 0.5 s followed by an empty black
screen with a fixation cross appeared for 0.5 s. Then, the next
stimulus was presented and the process was repeated till the
last stimulus (for this case, the 3rd stimulus) appeared on the
screen. After the last stimulus disappeared, the participants
were required to retain the three presented stimuli for 2 s
(i.e., the retention period) when participants should hold all
the information of presented stimuli for a short term time
window. After the retention period, only one test stimulus was
presented, and the participants were asked to press the ‘‘yes’’
button if the test stimulus was one of the three previously pre-
sented stimulus; otherwise, they press the ‘‘no’’ button. In the
last phase of each trial, the participants received feedback on
whether their responses were correct.

All participants underwent both low and high workload
conditions, and each workload condition was repeated inde-
pendently for 60 trials. The order of the workload was ran-
domized to avoid the influence of mental fatigue.

B. DATA ACQUISITION AND PARTICIPANTS
Starstim R32 (Neuroelectrcis, Spain) was utilized to record
the EEG signals. The EEG signals were recorded at a sam-
pling rate of 500 Hz using 32 electrodes in accordance with
the standard 10-10 system. As shown in Fig. 2, thirty elec-
trodes except the Fp1 and Fp2 electrodes were included in
the further analysis. All the electrodes were referenced to the
electrode located at a right earlobe.

The experiment was approved by the Institutional Review
Board (IRB) of Korea University. Eighty-four healthy people
voluntarily participated in the Stenberg working memory
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FIGURE 2. Locations of the 30 electrodes.

task and none of them had a history of neurological and
psychiatric disorders. All participants were instructed on how
to perform the task before the experiment was commenced.
In addition, some participants were unable to adapt to the
difficulty of the high workload condition, resulting in poor
performance. These participants were thus excluded from
the further analysis. Taken together, three participants were
excluded. Finally, the data on the remaining sixty-two partic-
ipants (mean age, 23.2± 3.0 s.d., 27 females) were used for
this study.

We considered only those trials in which the participants
pressed the correct button because incorrect trials would not
guarantee that they held the stimulus information correctly
during the retention period. In addition, trials that showed
amplitudes exceeding −70 – 70 µ V were excluded from the
analysis. As a result, 5,301 samples collected from 62 partic-
ipants were utilized to train our network.

III. METHOD
A. DATA PREPROCESSING
Preprocessing was performed with MATLAB (MathWorks
Inc., Natick, MA). In the working memory task, memory
operations are primarily related to oscillations with frequency
between 4 Hz and 30 Hz [7]–[10], [40]. Based on prior
knowledge, the EEG signals are first band-pass filtered in a
frequency band from 0.5 Hz to 40 Hz, which removes the
direct current component and high-frequency noises. Then,
the filtered signals are down-sampled to 100 Hz.

The EEG signal is the best window to the cortical brain
activity. The cerebral cortex is broadly divided into four
areas, namely, the frontal lobe, temporal lobe, parietal lobe,
and occipital lobe. The lobes of the brain do not function
alone. The relationships between the lobes of the brain and
between the right and left hemispheres are very complex.
Because the memory operations are also closely related with

FIGURE 3. Topological maps of EEG spectral powers.

the four lobes in some way, it is very important to analyze
the spatial dynamics of the EEG data for understanding the
functioning clearly. Therefore, as shown in Fig. 3, we create a
topographical map to utilize the spatial characteristics of the
EEG spectral power using all 30 electrodes over the scalp.
The preprocessing procedures are divided into four steps: a)
Laplacian filtering, b) power spectrum estimation, c) 3D to
2D mapping of the EEG electrodes, and d) interpolation.

The first step, Laplacian filtering, is a spatial filtering
method to enhance localized activity while suppressing the
diffused activity [41]. There are multiple sources of signals in
the brain, and the sum of the signals generated from multiple
sources is measured at a single EEG electrode. Recovering
the target source from the superposition of the sources is a
typical source localization problem. Laplacian filtering is a
simple and effective method to address the problem in apply-
ing EEG data [42], [43]. By Laplacian filtering, we subtract
the weighted sum of the nearest neighbors of each electrode,
as follows [44]:

v̂i(t) = vi(t)−
∑
j∈Ni

wi,jvj(t), (1)

where Vi(t) denotes the signals of the i-th EEG electrode,
Ni denotes the nearest neighbors of the i-th EEG electrode
at time t , and wi,j is a weight determined by the reverse
of the distance between i-th and j-th EEG electrodes and is
normalized to satisfy

∑
j wi,j = 1 for a given i. We manually

define the set of the nearest neighbors Ni for each electrode.
The next step is to transform the EEG time series into fre-

quency domain data. The structure of the neural oscillations
is strongly linked to cognitive processes, and investigation of
frequency-specific changes in the EEG data leads to valuable
insights into the working of the brain. We applied Welch’s
method to 2-s EEG data recorded during the retention period
and obtained its power spectral density over the frequency
range of 2 Hz to 40 Hz spaced 2 Hz apart. In the third step,
the 3D electrode locations over the scalp are projected to a
2D image. Supposing a human head can be approximately
modeled as a sphere, we exploit the azimuthal equidistant
projection by defining that all points on the electrode are
at the proportionally correct distance from the center point
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FIGURE 4. Architecture of the proposed algorithm.

(center electrode, Cz). Then, the projected point is mapped to
a 32× 32 mesh and each point is assigned the power spectral
density of the corresponding electrode at each frequency [21].
The last step interpolates the empty values between the elec-
trodes using cubic spline interpolation [21]. Finally, the pre-
processing transforms the 2-s retention segments of the EEG
data from 30-electrodes into a 32× 32× 20 EEG image that
contains spatial and spectral information.

B. OVERALL ARCHITECTURE OF MULTILEVEL FEATURE
FUSION
3D convolution operations are commonly used to extract
both spatial and temporal features from video data [25], [45].
Because our EEG data were transformed into 3D image data
that contained spatial and spectral features, we propose a
3D CNN based multilevel feature fusion scheme, as shown
in Fig. 4. The proposed 3D CNN architecture consists of four
convolutional layers and four max-pooling layers based on
the 3D kernels to learn spatial and spectral characteristics.
The kernel size of all convolutional layers is 3 × 3 × 3
with unit stride and no padding. The max-pooling layers
have a 2 × 2 × 2 kernel size with a stride of two. We use
the exponential linear unit (ELU) to activate the outputs of
all convolutional layers. Like other activation functions such
as rectified linear unit (ReLU) and leaky ReLU, the ELU
can alleviate the vanishing gradient problem via the identity
function for positive values [46]. However, the ELU has
negative values to force the mean activated value closer to

zero as in batch normalization but with lower computational
complexity, although it saturates to a negative value with
smaller arguments [46]. The saturation decreases the for-
ward propagation of variations of the deactivated units. Thus,
the ELU is more robust against noise; moreover, it facilitates
faster learning and has higher classification accuracy than
ReLU in EEG decoding applications [19]. The ELU can be
expressed as

f (x) =

{
x, if x ≥ 0
β(ex − 1), otherwise.

(2)

where β is a positive hyperparameter to control a saturated
value of the negative input x. We set the fixed hyperparameter
β = 1 [46].
In most deep learning studies on EEG data [16]–[19],

[47], the high-level feature is adopted only in fully connected
layers and used for classification. However, we construct a
3D CNN based multilevel feature fusion method to exploit
the intermediate features that contain important information
from local and global properties of 3D EEG data [29]. Low-
level convolutional features are suitable for expressing the
local brain activities in each lobe, and high-level features
correspond to global core activities over the entire brain. The
new structure combining multilevel features, shown in Fig. 4,
integrates low-level and high-level features for classification.

In the proposed structure, the low-level convolutional fea-
tures (Layers 1, 2, and 3 in Fig. 4) have larger dimensions;
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FIGURE 5. Process of extracting the weighting factors.

consequently, the direct connection between low-level con-
volutional features and the fully connected layer greatly
increases the parameters to be estimated in the learning pro-
cess. To decrease the dimension of the low-level convolu-
tional features, we apply mean-pooling and max-pooling to
the low-level convolutional features by channels, and both
mean-pooled and max-pooled features are concatenated and
fed to the fully connected layer. The dropout [48] is applied
before all fully connected layers to prevent overfitting prob-
lems. After the fully connected layer, all multilevel features
are transformed to a 1D vector (x1, x2, x3, x4 ∈ R128).
In the next stage of the multilevel feature fusion, we cal-

culate the logit of each multilevel feature, where the logit is
the unnormalized final score of the model before the softmax
function. To obtain the logit, we perform L2-normalization
of the multilevel features and each column of the classifier
(wj ∈ R128), and multiply the normalized terms together.
L2-normalization makes the logit of each multilevel feature
fall in the range between −1 and 1, i.e., −1 < wTj xi < 1 for
∀i, j. Then, to weigh the logit of multilevel features that are
equally scaled, we propose a model to compute the weighting
factor α corresponding to the logit. To obtain α, we aggre-
gate the multilevel features (x1, x2, x3, x4) and then the com-
bined features are L2-normalized. The L2-normalization is
performed after aggregating the features to utilize the relative
magnitude of each multilevel feature. Then, the normalized
feature is forwarded to a multilayer perceptron with one
hidden layer and a softmax function, as shown in Fig. 5. It is
expressed as

α = σ (MT χ̄ + b), (3)

where χ ∈ R512 is a concatenation of the multilevel features
x1, x2, x3, and x4; χ̄ is the L2-normalized χ ;M ∈ R512×4 is
a hidden layer; b ∈ R4 is a bias parameter; α ∈ R4 are the
weighting factors; σ () is a softmax function. The sum of each
component α is equal to one and it indicates the importance
of the multilevel feature. The α is determined by adding b
to the product of the multilevel features and M , where M
and b are learnable parameters. Therefore, the appropriate
weighting factor is adaptively determined depending on χ̄
extracted from the 3D EEG images. The final prediction of
class j is made by summing each output after weighting it by

the weighting factor, as follows:

Pred(j) = s · σ

(
4∑
i=1

αiw̄Tj x̄i

)
, (4)

where wi denotes the i-th column of the classifier W ∈

R512×2, αi denotes the i-th component of α, and s > 0 is a
rescaling parameter with a positive real number. The rescaling
parameter s > 0 is introduced to help the network converge.
This is explained in detail in Section IIIC.

C. TRAINING METHOD IN MULTILEVEL FEATURE FUSION
In an earlier study onmultilevel feature fusion [22], the length
of a multilevel feature, which is selected from the pre-defined
value, is considered as the importance of the feature. The
study concatenated multilevel features and integrated them
into one feature by using a fully connected layer to be used
for classification. However, it is difficult to explain the effects
of the multilevel features in the classification process. There-
fore, to observe the effect of each multilevel feature sepa-
rately during the classification process, we utilize the method
of classifying each multilevel feature and then weighting
each classification result. To do this, we decompose the logit
into magnitude and direction of the multilevel feature and
classifier, i.e., w̄Tj x̄i = ‖w̄

T
j ‖2‖x̄i‖2 cos θ , where ‖x̄‖2 is the

L2-norm of x̄. Because the norm of an L2-normalized vector
is one, only the angular information is used for the classi-
fication. Then, the classification results of each multilevel
feature are weighted by multiplying the weighting factors.
The detailed expression for the classification loss is described
in 1) below and the gradient compensationmethod to alleviate
the problem caused by the weighting factor is described in 2).

1) WEIGHTED MULTILEVEL ANGULAR LOSS
The most widely used classification loss function, cross-
entropy loss with softmax function, is expressed as follows:

L = −
n∑
i=1

yi log
ew

T
i x+bi∑n

j=1 e
wTj x+bj

, (5)

where x denotes the deep feature, yi is one hot-encoded class
label of x, bj is a biased term of the j-th column, and n
is the number of the class. For simplicity, we express the
cross-entropy loss for a single instance, i.e., the batch size
as one. In general, x is the feature extracted from the last
convolutional layer and the logit, which is the final output of
the network without the softmax function, can be expressed
as wTi x+ bi. However, because our network utilizes all mul-
tilevel features, the logit of our network can be expressed as∑4

k=1(w̄
T
i x̄k + bi). Note that w̄Ti and x̄i are L2-normalized.

We set bi = 0 for ∀i as in [49]–[52]. Then, the logit can be
expressed as

4∑
i=1

(w̄Tj x̄i + bj) =
4∑
i=1

(‖w̄Tj ‖2‖x̄i‖2 cos θj,i)

=

4∑
i=1

cos θj,i, (6)
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where θj,i is the angle between two vectors w̄Tj and x̄i. In this
logit, only the angular information cos θj,i is used. It means
L2-normalization forces the prediction to depend only on the
angle θj,i between the classifier w̄Tj and features x̄i. Using the
above Eq. (6), the multilevel angular loss can be written as

L = −
n∑
i=1

yi log
exp

(∑4
k=1 cos θi,k

)
∑n

j=1 exp
(∑4

k=1 cos θj,k
) . (7)

Next, to allocate the importance of each multilevel feature,
the component of the weighting factor αi is multiplied with
the corresponding cosine values cos θj,i, as follows:

L = −
n∑
i=1

yi log
exp

(∑4
k=1 αk cos θi,k

)
∑n

j=1 exp
(∑4

k=1 αk cos θj,k
) . (8)

Because cos θj,i represents the logit of each multilevel feature
x̄i, we can determine the importance of the multilevel feature
x̄i bymultiplying the corresponding component of theweight-
ing factor αi.

In [49], it was proved that if the feature and each column
of the classifier are L2-normalized, the cross entropy loss
with the softmax function will have a lower bound, log(1 +
(n − 1)e−n/(n−1)), where n is the number of classes. When
n is large, this loss converges to a very large value after
few thousands of iterations and the network fails to reach
its optimal performance. Therefore, to generalize the model
for a large number of classes, we compensate the logit by
multiplying the rescaling parameter s that is trained by the
backpropagation algorithm as in [49]. Therefore, our final
loss equation can be obtained by rescaling the logit as follows:

L = −
n∑
i=1

yi log
exp

(
s
∑4

k=1 αk cos θi,k
)

∑n
j=1 exp

(
s
∑4

k=1 αk cos θi,k
) , (9)

where the rescaling parameter s is a learnable parameter.
In summary, the classification of each feature is conducted

with only angular information and the importance of each
feature is determined by multiplying the weighting factors.

2) GRADIENT COMPENSATION FOR TRAINING MULTILEVEL
FEATURES
We multiply the component of the weighting factors αi by
each logit of the multilevel feature x̄i. During the backpropa-
gation process, the training speed of the multilevel features
depends on αi. Higher αi stimulates faster training speed
whereas smaller αi prevents the convergence of the learn-
ing of the multilevel feature. Therefore, in this subsection,
we clearly define the problem and describe a gradient com-
pensation algorithm to address the problem. We can rewrite
Eq. (9) as

L = −
n∑
i=1

yi log
exp

(
s
∑4

k=1 αk w̄
T
i x̄k

)
∑n

j=1 exp
(
s
∑4

k=1 αk w̄
T
j x̄k

) . (10)

The gradient flow to component m of multilevel feature xl
can be computed as

∂L
∂xl,m

=

(
x̄l,m

∂αl

∂xl,m
+ αl

∂ x̄l,m
∂xl,m

)
ψ, (11)

where,

ψ = −

n∑
i=1

syi

∑n
j=1(w

T
i,m − w

T
j,m) exp

(
s
∑4

k=1 αk w̄
T
i x̄k

)
∑n

j=1 exp
(
s
∑4

k=1 αk w̄
T
j x̄k

) ,

(12)

xl,m denotes component m of the vector xl , l ∈ {1, 2, 3, 4},
andm ∈ {1, 2, · · · , 128}. Gradient flow of xl,m is divided into
the gradient flows of αl and x̄l,m. Because αl is multiplied
to x̄l,m, the component of the weighting factor αl serves
to regulate the learning speed of the multilevel feature x̄l
similar to the learning rate. Therefore, CNN cannot be trained
properly to extract the multilevel feature x̄l if the component
of the weighting factor αl is much smaller than the other
components of the weighting factor. In the backpropagation
process, we multiply the inverse of αl to compensate for the
different learning speeds of the multilevel features x̄l :

∂L
∂xl,m

←

(
x̄l,m

∂αl

∂xl,m
+

1
αl

(αl ·
∂ x̄l,m
∂xl,m

)
)
ψ. (13)

Only the weights of the convolutional and fully connected
layers used to extract x̄i are affected by the gradient com-
pensation, and M and b, which are used to extract α and the
classifierW , are not affected by the gradient compensation.

D. MULTILEVEL FEATURE FUSION WITH TEMPORAL
ATTENTION
It is crucial to consider temporal information of EEG data in
workload estimation because the brain functioning for work-
ing memory task consists of two processes: manipulation
and retention. After stimulation showing all words (Fig. 1),
the process of information manipulation, which has different
spectral patterns compared to the retention process, begins
immediately [44]. In addition, according to [35], the differ-
ence in spectral power due to task difficulty appears in a cer-
tain time during the retention process, and the timing varies
from person to person. Therefore, it is necessary to find the
individual time interval that has the spectral feature related
with the difficulty of the task. To extract the time interval,
we propose an LSTM based temporal attention method.

The 3D EEG image is modified by the following procedure
to contain temporal information. We divided the raw 2 s
EEG data into seven segments through an overlapping sliding
window with a window size of 0.5 s and a stride of 0.25 s.
Then, each segment is converted into a 3D EEG image as
done in Section III-A. Therefore, we can get seven frames
of 32 × 32 × 3 EEG images. Each frame is fed to the 3D
CNN structurewhich shares the sameweights with all frames.
The multilevel features and weighting factor of each frame
are computed as shown in Fig. 4.
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FIGURE 6. Framework of the temporal attention.

The final feature of each frame is the weighted sum of
multilevel features as follows:

xt =
4∑
i=1

αti x̄
t
i , (14)

where xt is the final feature at frame t , and αti and x̄ti are
t-th frame of αi and x̄i, respectively. xt is fed into two
stacked bidirectional LSTM to calculate the importance of
each frame. The temporal attention β t is estimated by putting
the output of the LSTM layer into the fully connected layer
and softmax function. This temporal attention β t is multiplied
by the corresponding feature xt , and the result is multiplied by
the L2-normalized classifier as shown in Fig. 6. Then, the final
loss function of the proposed multilevel feature fusion with
temporal attention can be written as:

L = −
n∑
i=1

yi log
exp

(
s
∑7

t=1
∑4

k=1 α
t
kβ

t w̄Ti x̄
t
k

)
∑n

j=1 exp
(
s
∑7

t=1
∑4

k=1 α
t
kβ

t w̄Tj x̄
t
k

) .
(15)

As shown in the above equation, each feature x̄ti is mul-
tiplied by two factors αti and β

t , which means that features
are weighted based on the information included in their time
segment and level of the layer.

IV. RESULTS
A. BEHAVIOR RESULTS
In this study, we performed the Sternberg task to measure
the mental workload. We analyzed the subject’s behavior by
accuracy and reaction time, which is summarized in Fig. 7.
The accuracy indicates the percentage of correct answers
in the Sternberg task and the reaction time represents the
duration between the display of the test stimulus and pressing
of the ‘‘yes’’ or ‘‘no’’ button. The basic hypothesis is that
as the difficulty of the workload increases, the accuracy
tends to decrease and the reaction time tends to increase.
As shown in Fig. 7, the behavior results are consistent with
the hypothesis: the accuracy decreases from 94.5% to 82.5%

FIGURE 7. Average of accuracy and reaction time for low and high
workload conditions. Error bar represents the standard error and asterisk
indicates a significant difference (paired t-test, p < 0.001) between low
and high workload conditions.

FIGURE 8. Conventional multilevel fusion method [22].

and the reaction time increases from 758.7 ms to 882.9 ms.
It shows that both accuracy and reaction time are significantly
different (paired t-test, p < 0.001) between the two tasks (low
and high workload conditions). Therefore, the results confirm
that 3-stimuli and 7-stimuli tasks have different difficulty
levels, and the Sternberg task is well designed to distinguish
between low and high workload conditions.

B. CLASSIFICATION RESULTS
We adopted the 10-fold cross-validation to verify the per-
formance of the proposed method. We created a dataset by
collecting all data of 62 participants and randomly divided the
dataset into 10 non-overlapping sets. One set was selected for
the test, and the others were used for training. We repeated
the training 10 times, and then averaged the classification
results of the ten sets. We compared the classification results
with those of other algorithms, which were implemented as
follows:

SVM: To extract the spectral feature, EEG signals were
re-montaged to a nearest neighbor Laplacian filter. We cal-
culated the power spectral density from 2 Hz to 40 Hz in
steps of 2 Hz using the Welch’s method. The power spectral
densities of 30 EEG electrodes were combined and trans-
formed into a 1D vector of 600 (20 × 30)-dimension. Then,
the standard normalization features of these vectors were
used for SVM training. We used a radial basis function with
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kernel size of {0.1, 0.5, 1, 5, 10}. The best result among the
parameters was used for the analysis.

k-nearest neighbor (K-NN): We tested the KNN algo-
rithm using 600-dimensional features exploited for the SVM
algorithm. In addition, we set the parameter k ∈ {3, 5, 7, 10},
which determines the number of nearest neighbors, and the
best result was used for comparison.

Baseline: For the baseline algorithm, we exploited the deep
feature x4 extracted from the last convolutional layer in the
proposed 3D CNN structure and used it for classification.
The CNN parameters were randomly initialized with Xavier
initialization [53]: the parameters were standard normalized
with Gaussian distributions with zero mean and standard
deviation

√
2/(nin + nout ), where nin is the dimension of the

neuron input and nout is the dimension of the neuron output.
We trained the proposed network for 400 epochs with an
Adam optimizer [54] with an initial learning rate of 0.001 and
the learning rate was decreased to 0.0001 after 200 epochs.
The batch size was set to 32.

2DCNN + LSTM/1D-Conv [16]: We produced seven
frames from one EEG image by using a 0.5 s window with
an overlap of 0.25 s. Each frame is generated by stacking
topology maps on three frequency bands of theta (4-7 Hz),
alpha (8-13 Hz) and beta (13-30 Hz), thus the size of a single
frame is 32 × 32 × 3 as done in [16]. The 2D convolutional
layer extracts spatial information, and its output is fed to
the LSTM and 1D convolutional layer to extract temporal
information. The output of the LSTM and 1D convolutional
layer is concatenated and fed to a fully connected layer for
workload classification.

3DCNN + LSTM [21]: This method extracts spatial and
spectral information using a 3D convolutional layer and then
utilizes a bidirectional LSTM to extract temporal informa-
tion. For a fair comparison, we replace the 3D convolutional
layer used in [21] with our baseline architecture, and its
output is fed into two stacked bidirectional LSTM layers as
done in [21].

Conventional multilevel fusion [22]: The EEG data used
in [22] contains 5,184 samples collected from 9 participants
using 25 electrodes, which has a similar data size with our
dataset. For a fair comparison, both methods have the same
learning structure except for the feature fusion part. The fea-
ture extraction process, which extracts multilevel features, x1,
x2, x3, and x4, from the 3D CNN structure, was the same as in
the proposedmethod. However, the length of each feature was
used to determine the weight of each feature [22]. As in [22],
we predefined a set of feature lengths as l = {32, 64, 128},
and assigned a value from this set as the length of each
feature (x1, x2, x3, x4) using the greedy algorithm. Then,
all features were concatenated and followed by the fully
connected layer and softmax function, as shown in Fig. 8.
The CNN parameters were initialized as in the baseline
method.

Proposed method: The rescaling factor s was initialized
to one and the other parameters were initialized in the same
way as in the baseline initialization method.

TABLE 1. Performance comparison of different algorithms.

TABLE 2. Confusion matrix for the proposed algorithm (3DCNN +

multilevel fusion + temporal attention) with average of 10-fold
cross-validation.

The classification accuracies of different algorithms are
summarized in Table 1. The result shows that the CNN
based algorithms outperform the traditional classifiers, SVM
and KNN. It implies that the handcrafted features are not
optimal for the classifiers, but CNN can extract the good
features using network training. In addition, the conventional
multilevel fusion [22] and the proposed algorithm performs
at least 3.0 % better than the baseline. This result shows
that the multilevel features are useful in extracting robust
EEG features across two mental tasks and achieve higher
accuracy of workload estimation. Also, we verify that our
multilevel feature fusion method is superior to the conven-
tional multilevel feature fusion algorithm. It can be inferred
that the optimal weight of each multilevel feature obtained
by the proposed method can improve the accuracy by 2.0
%. The proposed temporal attention put higher weighting
on strongly correlated frames with workload estimation and
improves the accuracy by 0.5 % compared to the proposed
multilevel fusion without the temporal attention. Finally, our
multilevel feature fusion with temporal attention achieves
the highest classification accuracy among conventional deep
learning algorithms. To provide more detailed classification
performance, we build a confusion matrix of the proposed
algorithm as shown in Table 2 and plot the training loss and
test accuracy along with epoch as shown in Fig. 9.

C. ANALYSIS OF WEIGHTING FACTOR
Here, we analyze the effect of the weighting factor α on the
classification performance. To show the difference in perfor-
mance between a predefined weighting factor and a learned
weighting factor, we train our network with a fixed weighting
factor with equal components, α = [0.25, 0.25, 0.25, 0.25],
i.e., the weighting factor is not optimally adjusted by the
proposed learning process expressed in Eq. (3) (see Fig. 5).
As shown in Table 3, the classification accuracy is drastically
reduced from 90.3 % to 88.5 % when the weighting factor, α,
is fixed at a suboptimal value. It reveals that the importance
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FIGURE 9. Training loss and test accuracy with training epochs of the
proposed algorithm (3DCNN + multilevel fusion + temporal attention).
Blue line indicates training loss and Red line indicates test accuracy. Each
line is calculated of averaging all cross-validation folds.

TABLE 3. Classification accuracy according to the method for determining
the weighting factor.

of the intermediate features should be adaptively determined
by the learning process that optimizes the cross-entropy loss
function.

Fig. 10 shows the cumulative distribution function (CDF)
of each component (α1, α2, α3, and α4) of α for all training
data. To compute the CDF, we analyzed α of the network
for determining the best performance among ten networks
trained in 10-fold cross-validation. The weighting factor α
was not fixed to one specific value during the training; it
changed with the test data, as shown in Fig. 10. Because the
weighting factor is obtained by multiplying the parameterM
and the multilevel feature x̄k determined by the EEG image,
different weighting factors are extracted according to the
EEG images. Interestingly, we can show that the components
of the weighting factors do not have equal values. Theweight-
ing factors, α2 and α3 for the intermediate features x̄2 and x̄3
are mainly distributed between 0 and 0.05, which are very
small. However, the weighting factors, α1 and α4 for the first
and last features x̄1 and x̄4 are mainly distributed between
0.2 and 0.8, which are relatively high. It can be deduced from
this result that the first convolutional layer has richer local
structure information and the last convolutional layer has
the most abundant global structure information. In summary,
performance improvement can be achieved by determining
appropriate α for each image through the learning process.

D. APPLICATION TO THE PUBLIC EEG DATASET
To verify the generalization of the proposedmultilevel feature
fusion method, we evaluate the performance using the pub-
lic EEG dataset for workload estimation published in [16].
The dataset contains EEG signals recorded at a sampling
rate of 500 Hz using 64 electrodes under the standard

FIGURE 10. Cumulative distribution function of α.

TABLE 4. Performance comparisons on the public EEG dataset.

10-10 system from fifteen participants. They conducted the
Sternberg task to measure workload of working memory and
its experimental protocol is briefly described below.

The experimental protocol is divided into three phases:
encoding phase, retention phase, and test phase. In the encod-
ing phase, participants were required to memorize English
characters, where the number of characters was randomly
chosen to be 2, 4, 6 or 8 for each trial. Then, the characters
were disappeared, and the participants were required to retain
the presented characters for 3.5 s (i.e., retention period). In the
last phase, the test character was shown in the monitor and
participants were asked to answer whether the test character
belonged to the previously presented characters. The number
of trials for each participant is 240. Two participants are
excluded from the dataset because of excess noise and arti-
facts in EEG signals [16], [17]. In addition, only those trials in
which the participants correctly answered were used for anal-
ysis. As a result, 2,670 samples collected from 13 participants
were utilized for a 4-class classification: workloads of 2, 4, 6,
and 8. We train the networks using EEG data recorded during
the retention period and use the 13-fold leave-one-subject-out
cross validation strategy presented in [16] and [17].

For a fair comparison, the proposed method is based on
the 2D CNN structure proposed in [16]. We extract multi-
level features from all pooling layers and apply our multi-
level feature fusion method to those features. Our temporal
attention is also applied to sequential features extracted from
each frame of EEG images. The performance results of the
traditional classifiers implemented in [16], the deep learning
algorithms [16], [17] and the proposed method are summa-
rized in Table 4.
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The results show that the proposed method has 2.8 %
higher accuracy than the original 2D CNN + LSTM/1D-
Conv structure [16], although the proposed method is based
on the same CNN structure of the 2DCNN + LSTM/1D-
Conv.Moreover, the accuracy of the proposedmethod is 1.5%
higher than the Fused CNNs [17] that is the state-of-the-art
method using the same EEGdataset. The significant improve-
ment verifies that the proposed multilevel feature fusion with
temporal attention could enhance the performance of conven-
tional CNN structures.

V. CONCLUSION
To simultaneously extract EEG features contain both local
and global structure information, we proposed a 3D CNN
based multilevel feature fusion algorithm for mental work-
load estimation. The multi-channel EEG data was trans-
formed to 3D EEG images that contained spectral and spatial
information. Then, we extracted the multilevel features from
the 3D convolutional operation and each multilevel feature
was multiplied by the weighting factor, which determines the
importance of each multilevel feature. The weighting factors
were adaptively optimized by the proposed learning process
according to the EEG image, which is essential to enhance the
performance of the proposed structure when compared with
the case where a fixed weighting factor is used. In addition,
the proposed temporal attention extracts the significant time
interval with spectral features that are strongly correlatedwith
task difficulty. The results proved that the multilevel feature
fusion method could improve the performance of the 2D/3D
CNN structure for mental workload estimation. Moreover,
the proposed model achieved an accuracy of 90.8 % on our
dataset and state-of-the-art accuracy of 93.9 % on the pub-
lic dataset. Thus, it outperformed the traditional classifiers
that use handcrafted features, the conventional 2D/3D CNN
algorithms, and the conventional multilevel fusion algorithm.
These findings coupled with our successful application of the
proposed method to predict mental workload using EEG data
suggest that our method for optimizing the weighting factor
will be a useful tool for image classification in other fields.
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