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Review
Techniques to enable direct communication between
the brain and computers/machines, such as the brain–

computer interface (BCI) or the brain–machine interface
(BMI), are gaining momentum in the neuroscientific
realm, with potential applications ranging from medi-
cine to general consumer electronics. Noninvasive BCI
techniques based on neuroimaging modalities are
reviewed in terms of their methodological approaches
as well as their similarities and differences. Trends in
automated data interpretation through machine learn-
ing algorithms are also introduced. Applications of func-
tional neuromodulation techniques to BCI systems
would allow for bidirectional communication between
the brain and the computer. Such bidirectional interfaces
can relay information directly from one brain to another
using a computer as a medium, ultimately leading to the
concept of a brain-to-brain interface (BBI).

Communication between the brain and its surroundings
Computer devices and computer-controlled machines have
become an indispensable element of daily life. The control
commands for these devices are typically generated by
motion of the extremities, eyes or vocal cords. Various
approaches have been taken to develop techniques that
circumvent these typical input routines. Such techniques
are particularly beneficial for individuals who are incapa-
ble of providing mechanical control commands, including
those with severe neuromuscular disorders, spinal inju-
ries, or limited mobility in the extremities. The brain–

computer interface (BCI) or the brain–machine interface
(BMI; noted as ‘BCI’ herein), also referred to as ‘direct
neural interface’, is a hardware and software system that
provides a direct communication link between the neural
activity of the brain and computer hardware/software
components, without the involvement of peripheral nerves
and muscles.

The concept of the BCI was first introduced in the early-
to mid-1970s by using electrical activity from the surface of
the scalp, as detected by electroencephalography (EEG), to
generate control commands for electronic devices and
computers [1]. Owing to the technical advancement of
implantable microelectrodes and processing electronics,
direct neural recordings from the lateral geniculate nuclei
in the thalamus of cats was applied to reproducibly recon-
struct visual images shown to them [2,3]. More recently, a
needle microelectrode array was implanted onto the corti-
cal surface of quadriplegic patients to detect electrical
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spikes and changes in the field potential from the soma-
tomotor areas of the brain. As a result, neural firing
patterns associated with amotor imagery task successfully
created multi-dimensional computer cursor movement
after closed-loop training [4]. A similar concept, which is
based on the direct recording/decoding of cortical activity to
control the directional movement patterns in a computer,
has been used to provide robotic limb function for primates
[5]. Electrocorticography (ECoG) utilizes signal detection
from an array of surface electrodes that are implanted over
the dura [6] and has been used to characterize brain
activity for the purpose of BCI [7,8].

These invasive methods inevitably carry risks associ-
ated with surgical procedures, thus generating the need for
noninvasive approaches to gain wider acceptance in neuro-
therapeutics and to increase the future commercial poten-
tial of BCI. Accordingly, noninvasive neuroimaging
modalities are gaining momentum in the research arena
for BCI systems. In this review article, we aim to review
current and emerging modalities and their basic operating
principles behind neuroimaging-based BCI.

Overview of the modalities used for BCI
Functional imaging modalities are listed in Table 1, along
with information related to signal detection, temporal and
spatial resolutions, and portability aswell as approximate
cost. EEG, magnetoencephalography (MEG) and func-
tional MRI (fMRI) constitute the most active areas of
investigation for BCI systems, whereas near infrared
spectroscopy (NIRS) and functional transcranial Doppler
sonography (fTCD) are emerging as potential modalities
for BCI applications. Nuclear imaging techniques, such as
single photon emission computed tomography and posi-
tron emission tomography, also offer information on re-
gional functional activity in the brain through the
detection of photons (e.g. gamma rays) that are emitted
by radioactive tracers sensitive to specific metabolic
mechanisms in the brain. However, these techniques
require the injection of radioactive pharmaceutical
agents, which prohibits repeated measurement in
humans and, consequently, discourage widespread use
for BCI applications. Accordingly, these methods are
excluded from further discussion in this review.

Signal detection
EEG

EEGmeasures differences in electric potential on the scalp
that are generated by neural activity, which is typically the
sum of excitatory and inhibitory postsynaptic potentials of
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Table 1. Current and potential neuroimaging-based BCI/BMI modalities

Type Signal source Temporal resolution Spatial resolution Portability Price range (USD)a

EEG Electrical potentials associated

with cortical activity

High (ms or better) Coarse; currently on the

order of a few cm3.

Portable �$200–$50 000

MEG Magnetic fields associated with

neuronal activity

High (ms or better) Coarse; limited spatial

localization, but currently

better than EEG.

Not portable $2–3 million

fMRI BOLD changes in

susceptibility-weighted MR signal

Low (1–2 s); limited

by hemodynamic delays

Good; on the order

of 64 mm3.

Not portable >$1 million

NIRS BOLD changes in absorption

spectrum of near-infrared light

Medium (hundreds of ms);

limited by hemodynamic

delays

Coarse; currently on

the order of 1 cm3

and limited depth

penetration (maximal

sensitivity at the cortical

surface).

Portable >$20 000

fTCD Blood flow velocity associated with

neuronal activity

Medium (tens of ms) Low; limitation of

characterizing perfusion

state via large blood

vessels.

Portable �$5000

aTypical ranges for experimental set-up.
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thousands or millions of cortical neurons [9]. The ensem-
bles of neurons transmitting neurological signals across
their synapses act as electric dipoles and generate mea-
surable potential at the scalp surface with magnitude
typically <100 mV (Figure 1). EEG is susceptible to both
radial and tangential dipole sources relative to the scalp
surface, with more sensitivity to sources in cortical gyri
than in sulci [9]. Multi-channel arrays, conventionally
comprising 64–128 electrodes [10], allow for simultaneous
recording of EEG activity from the entire surface of the
scalp. Localization of the source EEG activities is then
estimated by solving the ‘inverse problem’ based on the
temporal and spatial features of detected EEG activity and
conductivity/scattering modeling of the anatomy [11].
However, the technique suffers from a marginal spatial
resolution owing to the finite number of detectors (EEG
electrodes) and the nonlinear characteristics of detected
EEG scalp potentials arising from inhomogeneous thick-
ness, geometry and conductivity of underlying skull/brain
tissue [12]. Nonetheless, EEG has excellent temporal res-
olution (milliseconds or better), good portability and an
inexpensive set-up cost.

MEG

A superconducting quantum interference device (SQUID),
which is extremely sensitive to magnetic disturbance cre-
ated during neuronal activity, can be used for signal detec-
tion around the scalp (Figure 1). The negligible cerebral
magnetic fields [approximately one-billionth of the magni-
tude of the magnetic field of the earth (�0.5 gauss)] can be
measured feasibly by SQUID sensors [10]. Modern MEG
devices typically comprises helmet-shaped sensor arrays of
more than 300 SQUIDs that are systematically arranged to
cover the entire scalp. A synchronized activity of tens of
thousands of neurons results in MEG signals on the order
of 50–500 fT [13]. MEG principally detects the tangential
component of the cerebral sources [14]; therefore, it is more
susceptible to sulcal activity and less sensitive to dipole
sources lying on gyral surfaces at the same depth. MEG
source mapping, which involves the inverse problem simi-
lar to EEG [15], suffers from the lack of accurate spatial
resolution in spite of its ability to measure neural activity
in real-time. Furthermore,MEG requires dedicated shield-
ing from electromagnetic interference (EMI) and is less
beneficial in terms of portability, as compared with EEG.

fMRI

fMRI has surfaced as one of the major tools used for
noninvasive characterization of brain function with super-
ior spatial resolution (on the order of 2–3 mm cubic voxels)
and has offered new opportunities for relaying information
on regional brain activity and its possible regulation for the
BCI. fMRI was developed in the early 1990s, exploiting the
ability to detect changes in local cerebral blood volume,
cerebral blood flow and oxygenation levels during neuronal
activation [16]. The most widely used fMRI technique is
based on the detection of local blood oxygenation level
dependent (BOLD) signal contrast during neuronal acti-
vation using susceptibility-weighted (often referred to as
T2*-weighted) MR sequences, such as echo planar imaging
(EPI), that are sensitive to changes in local magnetic
susceptibility (Figure 1). Owing to inherently low BOLD
signal contrast (1–4% difference between activation signal
and baseline signal level) [17], a series of susceptibility-
weighted images covering the whole or part of the brain is
repeatedly acquired during block-based or event-related
behavioral or cognitive tasks.

To extract the spatial and temporal information from
the activation with respect to individual tasks, several
statistical methods are applied to the time series of the
MR signals on a voxel-by-voxel basis [18]. These methods
typically include univariate analyses based on the general
linear model [18] or multivariate analyses, such as inde-
pendent component analysis (ICA) [19]. The resulting
probability map of activation is typically thresholded
and overlaid on high-resolution anatomical images. fMRI
is generally performed using clinical MRI scanners (�3 T);
however, ultra-high-field (UHF) human body scanners (>7
T) are becoming more commercially available for potential
BCI applications. fMRI has a temporal resolution on the
order of 1–2 s, which is further confounded by physiological
delays in hemodynamic responses (approximately 4–5 s).
The high susceptibility to head motion artifacts also
requires compliance from the subject being imaged [20].
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Figure 1. Schematic diagram of brain signal detection mechanisms. EEG measures the electrical potential differences on the scalp that are generated by cortical neural activity.

Neurons transmitting neurological signals across their synapses act as dipole sources. MEG detects the magnetic fields associated with such neuronal activation by SQUID

sensors. fMRI measures the hemodynamic responses, particularly magnetic dynamics of protons (H+) related to neural activity; its technique is principally based on the

detection of local BOLD signal contrast during neuronal activation. Using multiple arrays of optodes, NIRS characterizes changes in the intensity of attenuated near-infrared (IR)

light (owing to scattering or absorption), resulting from changes in concentration between oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) during local neural activity. fTCD

is based on ultrasound Doppler imaging, developed to measure the velocity of blood flow in major cerebral arteries by the ultrasound transducer (UST).
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NIRS

Within the near-infrared spectrum (�630–1300 nm), light
can penetrate the skull and reach considerable depth (1–

3 cm from the skull surface) [21] to allow investigation of
cerebral metabolism [22] (Figure 1). NIRS characterizes
alternations in the intensity of attenuated light (owing to
scattering and absorption) at different wavelengths result-
ing from changes in oxyhemoglobin (HbO2) and deoxyhe-
moglobin (Hb) concentrations during local neural activity
[22]. Quantification of cortical neural activity is accom-
plished by applying multiple arrays of NIRS sensors
(optodes) around the scalp, whereas the depth information
can be estimated by time-of-flight distributions of the
detected infrared light [23]. Although the spatial resolu-
tion of NIRS is still marginal (on the order of 1 cm [22]) and
requires further refinement, NIRS can be made portable
with a price range similar to that of EEG systems (Table 1).
NIRS is a recently developed neuroimaging technique for
the assessment of functional activity in cortical regions of
the brain, and there has been growing interest in applying
NIRS to BCIs [24].

fTCD

Arguably the most recent addition to the techniques con-
sidered for BCI applications, fTCD is based on ultrasound
Doppler imaging, which was initially developed tomeasure
the velocity of blood flow in major cerebral arteries [25].
Blood flow velocity is measured by detecting the ultrasonic
wave frequencies reflected by flowing blood (Figure 1),
often using the same transducer that generated the origi-
nal sound wave. Because sound waves are both scattered
and absorbed by the skull, administration of the ultra-
sound beam through a ‘sonicationwindow’ (such as the thin
temporal bone) is necessary; however, individual variabili-
554
ty in skull thickness might hinder its applicability to the
general population. The fTCD method has limited depth
penetration, and the examination is constrained to the
major vessels. Therefore, it currently provides information
on hemispheric changes at the level of perfusion to major
cerebral arteries. For example, the hemispheric dominance
in blood flow during the performance of a language task
(such as word generation, which is typically left-dominant)
can be detected by fTCD [25] and concurrently interpreted
to generate appropriate binary computer commands.

Principles and common features
Neuroimaging-based BCI methods share common operat-
ing features across the different modalities. Comparative
schematics for conventional human-machine interfaces
(HMI) are shown in Figure 2. During the execution of a
motor task, specific areas of the brain are activated (e.g.
hand motor area) and the neural signal is transmitted to
the appropriate muscle groups via descending motor path-
ways in the peripheral nervous system (PNS). The muscle
movement is then relayed to conventional HMIs, such as a
keyboard or a computer mouse, to generate a specific input
command for the computer or machine to execute. The
operation performance is fed back to the operator via
sensory feedback, thus enabling a closed-loop adaptation
of the motor activity (i.e. for motor learning).

BCI replaces involvement of the descendingmotor path-
ways, PNS and muscles in the execution of motor tasks.
First, functional data from the brain are acquired using
different neuroimaging modalities. Then, the detected sig-
nals are routed to a set of rule-based algorithms to link the
state of temporal and spatial characteristics of brain activ-
ity to specific machine input commands. These commands
are often aided by a machine-learning algorithm to
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Figure 2. Comparative schematics of peripheral nervous system (PNS) and BCI pathways. Neuroimaging-based BCI techniques share common operating features of

sensorimotor physiology. For instance, an individual activates the motor cortex for hand movement, and the neural signal is transmitted to the appropriate muscle groups

via the descending motor pathway. The muscle movement is eventually executed and relayed to the conventional human-machine interface (HMI), such as a keyboard, to

generate a specific input command for the computer or machine. BCI circumvents the involvement of PNS and muscles through the detection, analysis and classification of

brain activity. Modification of brain activity is accomplished via feedback signals from operation performance (center), either by sensory feedback (particularly visual, as

indicated by the eye) for motor learning in HMI, or by feedback training for BCI learning, known as ‘neurofeedback’.
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improve the accuracy of prediction or classification [26,27].
The process often involves the repeated acquisition of
functional data from a subject to optimize the performance
of the machine-learning algorithm. The input commands
for the computer/machine are then transferred to the
computer; the overall task performance (such as accuracy
and speed) is often relayed back to the individual as
sensory feedback to allow the user to regulate the state
of specific brain function to achieve better performance.
Through these processes, the user consolidates the modi-
fied brain activation strategy for the BCI.

This feedback training, also known as ‘neurofeedback’
[28,29], occurs during the BCI procedure and can be ap-
plied to modify a person’s behavior-associated brain activi-
ty, resulting in a desirable cognitive outcome or behavior
(Figure 3). The process is mediated by the modification of
the level of cortical activation and subsequent learning of
the concurrent task strategy. With further practice/train-
ing, this iterative process continues until the neural activ-
ity can be adjusted to a targeted level via neural plasticity.
Clinical applications of such training cover a wide spec-
trum of neuropsychiatric conditions including pain modu-
lation [28], attention [30] or addiction control [31]. A more
detailed review of themodality-specific examples of BCIs is
presented below. The advantages and disadvantages of
each modality for BCI/BMI are listed in Table 2.

EEG-based BCI
The P300 component of event-related potentials (positive
deflection at approx. 300 ms post-stimulus) has often been
used as an electrophysiological cue to control BCIs owing to
its association with categorical stimulus-evaluation pro-
cesses [32]. For example, a user focuses attention succes-
sively on alphabetic characters he/she wishes to
communicate, and the computer detects the P300 that is
elicited when matrix-elements containing the chosen char-
acter are presented [33]. In addition to P300, slow cortical
potentials [34] and steady-state visual-evoked potentials
[35] have also been used as electrophysiological correlates
in EEG-based BCIs. From the viewpoint of frequency
components, the presence of event-related synchronization
(ERS) and desynchronization (ERD) in contralateral sen-
sorimotor m (8–12 Hz) and b (18–26 Hz) rhythms has been
observed both before and during movement [36,37] or
555
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Figure 3. Comparison of BCI adaptation and neural plasticity neural plasticity and BCI adaptation via feedback modification or training. To overcome the inter-

individual variability with respect to spectro-temporal features and spatial patterns of brain signals, advanced techniques of machine-learning have also been

introduced for BCIs to automatically adapt to the specific brain activity of each user (blue pathways). The feedback training occurs to modify individuals’ behavior-

associated brain activity, resulting in a desirable cognitive outcome or behavior. Through the machine-learning technique, the need for subject training can be

minimized. Similarly, the sensorimotor feedback process in the nervous system is also mediated by the modification of the level of cortical activation and subsequent

learning of the concurrent task strategy. With further practice/training, this iterative process continues until the neural activity can be adjusted to a targeted level via

neural plasticity (red pathways).

Table 2. Comparison of different neuroimaging-based BCI/BMI modalities

Type Advantages Disadvantages

EEG � Good portability and affordability

� Excellent temporal resolution applicable for real-time BCIs

� Good availability of paradigms and computational algorithms

for BCI applications compared with other modalities owing

to a relatively long developmental history

� Imperfection in spatial localization, marginal spatial resolution

� Involvement of inconvenient procedures during the placement

of electrodes

� Difficulties in maintaining good electrode–scalp contact

and achieving long-term use of electrodes

MEG � Excellent temporal resolution applicable for real-time BCIs

� Superior spatial resolution and functional

localization compared with EEG

� Limited portability

� High set-up and maintenance costs

� Requires dedicated electromagnetic shielding

fMRI � Excellent spatial resolution

� Data acquisition covering the entire brain volume

� Excellent source localization – advantageous for

identification of function-specific loci

� Limited temporal resolution associated with the inherent

hemodynamic delay

� Limited portability

� High set-up and maintenance costs

� Safety precaution required for ferromagnetic materials

� Requires dedicated electromagnetic shielding

NIRS � Good portability and affordability

� Metabolic specificity depending on IR spectrum response

� Uses corrosive-free sensors (e.g. optodes)

� Limited temporal resolution associated with the inherent

hemodynamic delay

� Optode size (requires spaces for both emitting and detecting

IR light sources)

� IR light occlusion by hair

fTCD � Good portability

� Ability to characterize the state of brain perfusion

� Potential to actively modulate spatially-localized neuronal

activity as computer-to-brain interface (CBI)

� Difficulties in transcranial delivery of the ultrasound

� Difficulties in adjustment of sonication path/focus

� Currently constrained to targeting large vessels

Review Trends in Biotechnology Vol.28 No.11
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during motor imagery [38] and has subsequently been
utilized to generate BCI commands.

The EEG signals that are obtained from the multi-
channel arrays manifest high-order spatiotemporal fea-
tures that need to be classified for generation of the
corresponding BCI commands. Accordingly, several classi-
fication methods have been applied to EEG-based BCIs
using algorithms based on linear classifiers and nonlinear
Bayesian classifiers (a comprehensive review of classifier
types provided in Refs. [39,40]). Furthermore, adaptation
of these machine-based classifiers to the real-time compu-
tation environment is actively being developed [26] and
includes the investigation of multivariate classification
techniques.

Nevertheless, EEG-based BCIs currently face unsolved
challenges. Inherently, they have a poor spatial resolution
associated with an inverse problem, and thus have to rely
on computational methods to localize the source of activa-
tion [11]. In addition, owing to the variance in spontaneous
EEG activity, a sufficient training phase is required before
users can effectively generate BCI commands [41]. To
overcome the substantial variability between individuals
with respect to spectrotemporal features and spatial pat-
terns of brain signals, advanced techniques of machine-
learning have also been introduced for BCIs to automati-
cally adapt to the specific brain activity of each user
(Figure 3) [42]. Through the machine-learning technique,
it has been demonstrated that the need for subject training
can be minimized [43].

MEG-based BCI
MEGhas been utilized in the field of real-time BCI because
of its ability to instantly measure and compute magnetic
field perturbation as a result of neuronal activity. MEG
signals are magnetic ‘counterparts’ of EEG signals; there-
fore, MEG-based BCIs employ similar data processing
strategies used in EEG-based BCIs [44]. Using the modu-
latory property of posterior a rhythm activity in MEG, it
has been noted that the four target orientations of covert
spatial attention (represented as four squares located at
the top, right, bottom and left of the central fixation cross
on the screen) could be reliably classified with up to 69%
accuracy, without the need for lengthy and cumbersome
subject training [45]. In an effort to improve classification
techniques, the use of a temporal evolution of regularized
classifiers has been suggested [46], and a linear Bayesian
support vector machine (SVM) has been employed [47].
Furthermore, using synthetic aperture magnetometry
(SAM) and a four-direction classification scheme, 95–

97% classification accuracy for motor tasks and 86–87%
classification accuracy for motor imagery tasks have been
observed [48]. This promises a reliable, high performance,
two-dimensional (2D) BCI from single-trial detection of
natural human movement intentions. In the context of
clinical applications, it has been reported that chronic
stroke patients restored hand function using MEG-based
BCI training [49].

Although MEG might be too bulky and expensive to
become a convenient BCI modality for everyday use, mag-
netic fields are less attenuated or distorted by the skull and
scalp than electric fields. As a result, MEG signals are less
affected by the unknown physical properties of the skull
than EEG signals [50]. Accordingly, reconstruction ofMEG
signals yields better spatial resolution than EEG (approx.
threefold in terms of 3 dB roll-off points for forward/inverse
filters [15]). For example, MEG can detect a sensorimotor
rhythmwith adequate spatial resolution to distinguish the
movement of a single finger [51]. In addition, MEG can
provide a consistent feedback experience and faster learn-
ing of m rhythm control for participants [52] owing to its
better signal-to-noise ratio than EEG. Nonetheless, MEG-
based BCI would benefit from further improvement during
the source localization process.

fMRI-based BCI
With the emergence of techniques to allow fast data pro-
cessing and characterization, real-time fMRI (rtfMRI) [53]
or near-real-time processing of fMRI data [54] has provided
a medium by which individuals can receive information on
the state of their own brain activity on-line. As a result, an
individual can gain a degree of voluntary control of the
regulation of region-specific cortical activation, thus en-
abling BCI. For example, the range of reported BCI tasks
includes the regulation of activity in the sensorimotor
areas during hand motor tasks [54] and in rostral-ven-
tral/dorsal parts of the anterior cingulate cortex associated
with the regulation of affective states or pain [28,53].
Furthermore, the activation in human auditory areas
has been regulated based on selective auditory attention
[55,56], whereas the activation in the sensorimotor cortex
was enhanced during hand imagery tasks [57], confirming
the observations of the earlier work [58]. The feasibility of
rtfMRI-based BMI was also recently demonstrated [59],
whereby 2D movement of a robotic arm was controlled by
the regulation (and concurrent detection) of regional corti-
cal activations in the primary motor areas. In this study,
the participants engaged in right- and/or left-hand motor
imagery tasks, and the BOLD signals originating from the
corresponding hand motor areas were then translated into
horizontal or vertical robotic arm movement.

Automated interpretation and classification of fMRI
data is an emerging research field in the fMRI-BCI com-
munity to characterize underlying cognitive processes with
minimal human intervention. Recent studies have
addressed the concept of automatic pattern classification
of fMRI data acquired from multiple sensory, motor and
cognitive performances. Although variations in data pro-
cessing schemes and region-of-interest selection exist [60],
commonly adopted procedures include the automatic ex-
traction of spatial and temporal features of activation
maps using a machine learning algorithm, such as SVM
or linear discriminant analysis techniques [60,61]. Fur-
thermore, the accuracy of the classification varies greatly
depending on the nature of the task and timing, from 53%
[60] to 90% [62]. During these procedures, however, iden-
tification of the brain areas that are consistently and
exclusively activated for a given task improves classifica-
tion efficiency [61].

NIRS-based BCI
NIRS signals have been studied in relation to cognitive
functions, suggesting their potential applicability to BCI
557



Box 1. ‘Real-world’ applications of noninvasive BCI

BCI technology has been applied to several ‘real-life’ scenarios, with

the primary goal of helping individuals with severe motor-disability

as a result of amyotrophic lateral sclerosis (ALS), stroke, accidental

injuries and other neuromuscular disorders. An estimated 50 000–

60 000 people worldwide suffer from ALS [81] and approximately 15

million people worldwide suffer from stroke each year [82]; as such,

noninvasive BCI technology will provide many of these individuals

with an opportunity to achieve an enhanced quality of life.

ALS is a devastating disease that is characterized by progressive

muscle weakness and atrophy owing to degeneration of the motor

neurons. ALS eventually leads to a ‘locked-in’ state, whereby there

is no external communication from the patient [77]. As an example

of BCI application, four ALS patients have learned to control the

movement of a computer cursor through EEG-based BCI (mediated

by the detection of the sensorimotor rhythms) during a motor

imagery task [78]. Similarly, P300-component based BCI has been

tested on healthy volunteers to control a wheelchair outfitted with

navigation capability [79]. Another real-life example of BCI could be

found from improved rehabilitation outcome of a stroke-victim

through a combination of EEG–MEG BCI-based training with goal-

directed active physical therapy [80].

When used in the context of neurofeedback, BCI has ameliorated

several neurological conditions, such as epilepsy [83] and chronic

pain [28,84], as well as cognitive-psychiatric disorders, including

attention-deficit hyperactivity disorder [85] and anxiety [86]. For

instance, with the emergence of the fMRI-based BCI neurofeedback

technique and its use in the management of chronic pain [28],

individuals who suffer from chronic pain could potentially receive its

benefits. It is also notable that efforts are being made to apply BCI

technologies to operate simple personal communication (e.g. word

processing, email, speech synthesizing) and environmental control

(e.g. home automation) devices [87], with potential for future use in

consumer electronics.
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devices [63]. During overt and covert hand movements, the
contralateral hemispheric NIRS response was observed
[64]. Furthermore, using motor imagery with a NIRS
system, 89% correct classification of right and left hand
imagery tasks has been observed [63]. NIRS can also detect
the hemodynamic responses corresponding to the P300
component [65], and therefore potentially generates
P300-related BCI commands without the use of EEG.
The convincing belief of the applicability of NIRS to BCIs
is reinforced by recent studies in which binary subjective
preference was evaluated on a single-trial basis of NIRS
signals during decision-making tasks, with an average
accuracy of 80% [66]. Likewise with other modalities used
in BCIs, pattern recognition techniques, such as SVM and
the hidden Markov model (HMM), have also been intro-
duced to classify NIRS signals [63].

NIRS promises to be a potent device for future BCIs
owing to its flexibility of use, portability, metabolic speci-
ficity, high sensitivity in detecting small substance con-
centrations and affordability [64]. Compared with EEG,
NIRS requires neither conductive gel nor corrosive elec-
trodes, making it suitable for extended use [67]. However,
major challenges of NIRS-based BCIs include the inherent
latency of the hemodynamic response (on the order of
several seconds), resulting in slow operation of NIRS-based
BCIs and an inability to characterize the signals from
subcortical regions [63]. To improve the feasibility of
NIRS-based BCIs, the influence of respiration and blood
pressure on hemodynamic response has to be reduced and
higher spatial resolution needs to be attained [67].

Concluding remarks and future implications
The ability to control computers and machines directly via
thought processes in a noninvasive manner will undoubt-
edly offer various facets for clinical applications, ranging
from the provision of control options for paralyzed individ-
uals to potential neurorehabilitation via feedback training
(Box 1).

There are ongoing efforts to increase the accuracy and
flexibility of classification methods of neuroimaging data
for BCI applications by combining/complementing data
frommultiple modalities. For example, the spatiotemporal
characteristics of the BOLD signal from fMRI training can
be correlated with specific EEG signal patterns that are
associated with task training [68]. These patterns can be
used as a supplement in subsequent training sessions. The
combination of EEG and rtfMRI training data can be used
to provide information that might not be easily obtained by
fMRI alone, such as a high-speed, temporal sequence of
activation/deactivation of brain activity. In doing so, it is
important to account for the artifacts that an MRI envi-
ronment produces in an EEG signal. For instance, ballis-
tocardiogram artifacts, which arise from changes in
electrical potential associated with subtle scalp motion
or cranial/brain perfusion in the middle of a strong mag-
netic field, appear as low-frequency, periodic signals syn-
chronized with cardiac pulsation [69]. Various filtering
methods based on subtraction or adaptive filtering cued
by the electrocardiography and electrooculography activity
[69] and ICA [70] have been developed and are being
investigated for EEG-fMRI integration.
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In addition to thesemulti-modal approaches in BCI, it is
important to note that the current concept of BCI has been
formed around a unidirectional control mechanism in the
sense that control information flows from the brain to a
computer/machine. Therefore, one might argue that the
means for computer-to-brain interface (CBI) should be
created to realize a bidirectional interface between the
brain and the computer. A method that enables the con-
trolled modulation of regional brain activity will offer a
new window of opportunity for creating various clinical
applications ranging from functional brain mapping to the
treatment of numerous brain-related disorders.

Invasive techniques, such as vagus nerve stimulation
and deep brain stimulation, can provide a means for
controlled neuromodulation [71]. As a potential alternative
to these invasive procedures, transcranial magnetic stim-
ulation (TMS) is employed to modulate cortical activity
through the induction of current on the cortical surfaces by
applying strong magnetic fields over the scalp; however,
TMS lacks spatial specificity and has a limited depth of
penetration [72].

Focused ultrasound (FUS) techniques might overcome
some of these limitations and offer potential solutions for
noninvasive CBI. Advancement in FUS technology now
allows for a noninvasive and spatially accurate delivery of
acoustic energy (and concurrent deposition of thermal or
mechanical energy) to a small tissue region [73]. Owing to
the ability to deposit steerable mechanical energy on small
areas of the brain in a noninvasive manner, the FUS-
mediated functional modulation of local brain regions
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has been suggested [74]. Through demonstration in recent
animal models [75], highly localized reversible modulation
was achieved by pulsed FUS sonication at the motor and
visual areas, operating in low acoustic intensity, under the
intensity used by most clinical ultrasound imagers, which
is <720 mW/cm2 spatial-peak temporal average intensity
[76]. Application of these new techniques to various BCI
methods might eventually complete the interface between
the brain and the computer, thus leading to the develop-
ment of a ‘brain-to-brain interface’ (BBI), in which neural
activities from different individuals are linked and medi-
ated by computers. The potential utilities of such systems
remain to be investigated.
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